Suppr超能文献

在福尔马林固定石蜡包埋(FFPE)人体样本上采集的傅里叶变换红外(FTIR)图像上自动识别石蜡像素

Automatic Identification of Paraffin Pixels on FTIR Images Acquired on FFPE Human Samples.

作者信息

Boutegrabet Warda, Guenot Dominique, Bouché Olivier, Boulagnon-Rombi Camille, Marchal Bressenot Aude, Piot Olivier, Gobinet Cyril

机构信息

Institut National de la Santé et de la Recherche Médicale, IRFAC Inserm U1113, Université de Strasbourg (Unistra), 3 avenue Molière, 67200 Strasbourg, France.

BioSpecT EA 7506, Université de Reims Champagne Ardenne, 51 rue Cognacq-Jay, 51097 Reims, France.

出版信息

Anal Chem. 2021 Mar 2;93(8):3750-3761. doi: 10.1021/acs.analchem.0c03910. Epub 2021 Feb 16.

Abstract

The transfer of mid-infrared spectral histopathology to the clinic will be possible provided that its application in clinical practice is simple. Rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue section is thus a prerequisite. The chemical dewaxing of these samples before image acquisition used by the majority of studies is in contradiction with this principle. Fortunately, the in silico analysis of the images acquired on FFPE samples is possible using extended multiplicative signal correction (EMSC). However, the removal of pure paraffin pixels is essential to perform a relevant classification of tissue spectra. So far, this task was possible only if using manual and subjective histogram analysis. In this article, we thus propose a new automatic and multivariate methodology based on the analysis of optimized combinations of EMSC regression coefficients by validity indices and KMeans clustering to separate paraffin and tissue pixels. The validation of our method is performed using simulated infrared spectral images by measuring the Jaccard index between our partitions and the image model, with values always over 0.90 for diverse baseline complexity and signal-to-noise ratio. These encouraging results were also validated on real images by comparing our method with classical ones and by computing the Jaccard index between our partitions and the KMeans partitions obtained on the infrared image acquired on the same samples but after chemical dewaxing, with values always over 0.84.

摘要

只要中红外光谱组织病理学在临床实践中的应用简单易行,它向临床的转化就是可能的。因此,对福尔马林固定石蜡包埋(FFPE)组织切片进行快速分析是一个先决条件。大多数研究在图像采集前对这些样本进行化学脱蜡,这与这一原则相矛盾。幸运的是,使用扩展乘法信号校正(EMSC)可以对在FFPE样本上采集的图像进行计算机分析。然而,去除纯石蜡像素对于对组织光谱进行相关分类至关重要。到目前为止,只有使用手动和主观的直方图分析才能完成这项任务。因此,在本文中,我们提出了一种新的自动多变量方法,该方法基于通过有效性指标和KMeans聚类分析EMSC回归系数的优化组合,以分离石蜡和组织像素。我们通过测量我们的分区与图像模型之间的杰卡德指数,使用模拟红外光谱图像对我们的方法进行验证,对于不同的基线复杂度和信噪比,该值始终超过0.90。通过将我们的方法与经典方法进行比较,并计算我们的分区与在相同样本上采集但经过化学脱蜡后的红外图像上获得的KMeans分区之间的杰卡德指数,这些令人鼓舞的结果也在真实图像上得到了验证,该值始终超过0.84。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验