The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Clin Cancer Res. 2021 May 1;27(9):2571-2583. doi: 10.1158/1078-0432.CCR-20-4834. Epub 2021 Feb 16.
While immune checkpoint inhibitors (ICI) have revolutionized the treatment of cancer by producing durable antitumor responses, only 10%-30% of treated patients respond and the ability to predict clinical benefit remains elusive. Several studies, small in size and using variable analytic methods, suggest the gut microbiome may be a novel, modifiable biomarker for tumor response rates, but the specific bacteria or bacterial communities putatively impacting ICI responses have been inconsistent across the studied populations.
We have reanalyzed the available raw 16S rRNA amplicon and metagenomic sequencing data across five recently published ICI studies ( = 303 unique patients) using a uniform computational approach.
Herein, we identify novel bacterial signals associated with clinical responders (R) or nonresponders (NR) and develop an integrated microbiome prediction index. Unexpectedly, the NR-associated integrated index shows the strongest and most consistent signal using a random effects model and in a sensitivity and specificity analysis ( < 0.01). We subsequently tested the integrated index using validation cohorts across three distinct and diverse cancers ( = 105).
Our analysis highlights the development of biomarkers for nonresponse, rather than response, in predicting ICI outcomes and suggests a new approach to identify patients who would benefit from microbiome-based interventions to improve response rates.
免疫检查点抑制剂(ICI)通过产生持久的抗肿瘤反应彻底改变了癌症的治疗方法,但只有 10%-30%的接受治疗的患者有反应,预测临床获益的能力仍难以捉摸。一些研究规模较小,使用不同的分析方法,表明肠道微生物组可能是一种新的、可改变的预测肿瘤反应率的生物标志物,但在研究人群中,潜在影响 ICI 反应的特定细菌或细菌群落并不一致。
我们使用统一的计算方法重新分析了最近发表的五项 ICI 研究(=303 名患者)的可用 16S rRNA 扩增子和宏基因组测序数据。
在此,我们确定了与临床应答者(R)或无应答者(NR)相关的新细菌信号,并开发了一个综合微生物组预测指数。出乎意料的是,使用随机效应模型和敏感性特异性分析(<0.01),NR 相关的综合指数显示出最强和最一致的信号。随后,我们使用三个不同和多样化的癌症的验证队列测试了综合指数(=105)。
我们的分析强调了开发非应答生物标志物而不是应答生物标志物来预测 ICI 结果的重要性,并提出了一种新方法来识别那些可能受益于基于微生物组的干预措施以提高反应率的患者。