肠道微生物组预测免疫检查点阻断相关不良事件。
Gut microbiome for predicting immune checkpoint blockade-associated adverse events.
机构信息
State Key Laboratory of Systems Medicine for Cancer, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, 200001, China.
Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
出版信息
Genome Med. 2024 Jan 19;16(1):16. doi: 10.1186/s13073-024-01285-9.
BACKGROUND
The impact of the gut microbiome on the initiation and intensity of immune-related adverse events (irAEs) prompted by immune checkpoint inhibitors (ICIs) is widely acknowledged. Nevertheless, there is inconsistency in the gut microbial associations with irAEs reported across various studies.
METHODS
We performed a comprehensive analysis leveraging a dataset that included published microbiome data (n = 317) and in-house generated data from 16S rRNA and shotgun metagenome samples of irAEs (n = 115). We utilized a machine learning-based approach, specifically the Random Forest (RF) algorithm, to construct a microbiome-based classifier capable of distinguishing between non-irAEs and irAEs. Additionally, we conducted a comprehensive analysis, integrating transcriptome and metagenome profiling, to explore potential underlying mechanisms.
RESULTS
We identified specific microbial species capable of distinguishing between patients experiencing irAEs and non-irAEs. The RF classifier, developed using 14 microbial features, demonstrated robust discriminatory power between non-irAEs and irAEs (AUC = 0.88). Moreover, the predictive score from our classifier exhibited significant discriminative capability for identifying non-irAEs in two independent cohorts. Our functional analysis revealed that the altered microbiome in non-irAEs was characterized by an increased menaquinone biosynthesis, accompanied by elevated expression of rate-limiting enzymes menH and menC. Targeted metabolomics analysis further highlighted a notably higher abundance of menaquinone in the serum of patients who did not develop irAEs compared to the irAEs group.
CONCLUSIONS
Our study underscores the potential of microbial biomarkers for predicting the onset of irAEs and highlights menaquinone, a metabolite derived from the microbiome community, as a possible selective therapeutic agent for modulating the occurrence of irAEs.
背景
肠道微生物群对免疫检查点抑制剂(ICIs)引发的免疫相关不良事件(irAEs)的发生和强度有影响,这一点已得到广泛认可。然而,不同研究报道的肠道微生物与 irAEs 的关联存在不一致性。
方法
我们利用一个包含已发表的微生物组数据(n=317)和来自 16S rRNA 和 shotgun 宏基因组样本的 irAEs(n=115)的内部生成数据的数据集,进行了全面的分析。我们利用基于机器学习的方法,特别是随机森林(RF)算法,构建了一个能够区分非 irAEs 和 irAEs 的基于微生物组的分类器。此外,我们进行了全面的分析,整合了转录组和微生物组分析,以探索潜在的潜在机制。
结果
我们确定了能够区分经历 irAEs 和非 irAEs 的患者的特定微生物物种。使用 14 种微生物特征开发的 RF 分类器在非 irAEs 和 irAEs 之间表现出强大的区分能力(AUC=0.88)。此外,我们的分类器的预测评分在两个独立队列中具有显著的识别非 irAEs 的能力。我们的功能分析表明,非 irAEs 中改变的微生物组以menaquinone 生物合成增加为特征,伴随着限速酶 menH 和 menC 的表达升高。靶向代谢组学分析进一步突出了在未发生 irAEs 的患者的血清中menaquinone 的含量明显更高,与 irAEs 组相比。
结论
我们的研究强调了微生物生物标志物预测 irAEs 发生的潜力,并突出了menaquinone,一种源自微生物组群落的代谢物,作为一种可能的选择性治疗剂,用于调节 irAEs 的发生。