Zeng S, Zhang Q, Jiménez-Serra I, Tercero B, Lu X, Martín-Pintado J, de Vicente P, Rivilla V M, Li S
School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS London, UK.
Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA.
Mon Not R Astron Soc. 2020 Oct;497(4):4896-4909. doi: 10.1093/mnras/staa2187. Epub 2020 Jul 29.
G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The origin of such chemical complexity, along with the small-scale physical structure and properties of G+0.693-0.03, remains a mystery. In this paper, we report the study of multiple molecules with interferometric observations in combination with single-dish data in G+0.693-0.03. Despite the lack of detection of continuum source, we find small-scale (0.2 pc) structures within this cloud. The analysis of the molecular emission of typical shock tracers such as SiO, HNCO, and CHOH unveiled two molecular components, peaking at velocities of 57 and 75 km s. They are found to be interconnected in both space and velocity. The position-velocity diagrams show features that match with the observational signatures of a cloud-cloud collision. Additionally, we detect three series of class I methanol masers known to appear in shocked gas, supporting the cloud-cloud collision scenario. From the maser emission we provide constraints on the gas kinetic temperatures (∼30-150 K) and H densities (10-10 cm). These properties are similar to those found for the starburst galaxy NGC253 also using class I methanol masers, suggested to be associated with a cloud-cloud collision. We conclude that shocks driven by the possible cloud-cloud collision is likely the most important mechanism responsible for the high level of chemical complexity observed in G+0.693-0.03.
G+0.693 - 0.03是位于人马座B2(Sgr B2)恒星形成复合体中的一个宁静分子云。最近的光谱调查表明,它是银河系中最丰富的复杂有机物种储存库之一。这种化学复杂性的起源,以及G+0.693 - 0.03的小尺度物理结构和性质,仍然是个谜。在本文中,我们报告了结合单 dish 数据对G+0.693 - 0.03进行干涉测量以研究多种分子的情况。尽管未检测到连续光源,但我们在这片云中发现了小尺度(0.2秒差距)结构。对典型激波示踪剂如SiO、HNCO和CHOH的分子发射分析揭示了两个分子成分,峰值速度分别为57和75千米/秒。它们在空间和速度上都是相互关联的。位置 - 速度图显示的特征与云 - 云碰撞的观测特征相匹配。此外,我们检测到已知出现在激波气体中的三个系列的I类甲醇脉泽,这支持了云 - 云碰撞的场景。从脉泽发射中,我们给出了气体动力学温度(约30 - 150K)和氢密度(10 - 10厘米)的限制。这些性质与同样使用I类甲醇脉泽在星爆星系NGC253中发现的性质相似,表明与云 - 云碰撞有关。我们得出结论,由可能的云 - 云碰撞驱动的激波可能是导致在G+0.693 - 0.03中观测到的高度化学复杂性的最重要机制。