Suppr超能文献

从时间分辨气相 X 射线散射测定激发态分子结构。

Determination of excited state molecular structures from time-resolved gas-phase X-ray scattering.

机构信息

Brown University, Department of Chemistry, Providence, Rhode Island 02912, USA.

Department of Chemistry and Biochemistry, Western Connecticut State University, Danbury, Connecticut 06810, USA.

出版信息

Faraday Discuss. 2021 May 27;228(0):104-122. doi: 10.1039/d0fd00118j.

Abstract

We present a comprehensive investigation of a recently introduced method to determine transient structures of molecules in excited electronic states with sub-ångstrom resolution from time-resolved gas-phase scattering signals. The method, which is examined using time-resolved X-ray scattering data measured on the molecule N-methylmorpholine (NMM) at the Linac Coherent Light Source (LCLS), compares the experimentally measured scattering patterns against the simulated patterns corresponding to a large pool of molecular structures to determine the full set of structural parameters. In addition, we examine the influence of vibrational state distributions and find the effect negligible within the current experimental detection limits, despite that the molecules have a comparatively high internal vibrational energy. The excited state structures determined using three structure pools generated using three different computational methods are in good agreement, demonstrating that the procedure is largely independent of the computational chemistry method employed as long as the pool is sufficiently expansive in the vicinity of the sought structure and dense enough to yield good matches to the experimental patterns.

摘要

我们全面研究了一种新方法,该方法可通过亚埃分辨率的时间分辨气相散射信号来确定激发电子态下分子的瞬态结构。该方法使用在林可自由电子激光源(LCLS)上测量的 N-甲基吗啉(NMM)分子的时间分辨 X 射线散射数据进行了检验,将实验测量的散射图案与对应于大量分子结构的模拟图案进行比较,以确定整套结构参数。此外,我们还研究了振动态分布的影响,并发现即使分子具有相对较高的内部振动能量,这种影响在当前的实验检测极限内也可以忽略不计。使用三种不同计算方法生成的三个结构池确定的激发态结构非常吻合,这表明该程序在很大程度上与所使用的计算化学方法无关,只要该池在目标结构附近足够广泛且密集以与实验图案产生良好匹配即可。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验