Lu Suwei, Weng Bo, Chen Aizhu, Li Xinwei, Huang Haowei, Sun Xiaoming, Feng Wenhui, Lei Yanhua, Qian Qingrong, Yang Min-Quan
College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China.
cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
ACS Appl Mater Interfaces. 2021 Mar 24;13(11):13044-13054. doi: 10.1021/acsami.0c19260. Epub 2021 Feb 17.
Metal cocatalyst loading is one of the most widely explored strategies in promoting photocatalytic solar energy conversion. Engineering surface-active facets of metal cocatalyst and exploring how they modulate the reactivity is crucial for the further development of advanced photocatalysts. In this work, through controlled hybridization of two-dimensional (2D) TiO nanosheets with well-designed Pd nanocube (Pd NC) with exposed {100} facet and Pd nano-octahedron (NO) with exposed {111} facet, we unravel the distinct crystal facet effect of Pd cocatalyst in promoting the selective hydrogenation of nitroarenes to amines of TiO photocatalyst. The activity tests show that the Pd NO with {111} facet is a more efficient cocatalyst than the Pd NC with exposed {100} facet. The prepared TiO-Pd NO composite displays a 900% enhancement of photocatalytic hydrogenation rate in comparison with bare TiO, while the TiO-Pd NC sample only shows a 200% photoactivity enhancement. Microscopic mechanism study discloses that the distinctive photoactivity improvement of Pd NO is ascribed to the concurrent modulation of the Schottky barrier height and enrichment of surface reactants: (i) the Pd NO with a lower Fermi level could result in steeper band bending of TiO (i.e., higher Schottky barrier) than the Pd NC, which is more efficient in boosting interfacial separation and inhibiting the recombination of photoexcited charge pairs; and (ii) the {111} facet of Pd has higher nitroarenes adsorption ability and especially stronger hydrogen enrichment capability, thus accelerating the surface hydrogenation process and contributing to a higher reaction rate. This work emphasizes the rational facet control of cocatalysts for enhancing the photocatalytic hydrogenation performance.
金属助催化剂负载是促进光催化太阳能转换中探索最为广泛的策略之一。设计金属助催化剂的表面活性晶面并探究其如何调节反应活性对于先进光催化剂的进一步发展至关重要。在这项工作中,通过将二维(2D)TiO纳米片与精心设计的暴露{100}晶面的Pd纳米立方体(Pd NC)和暴露{111}晶面的Pd纳米八面体(NO)进行可控杂交,我们揭示了Pd助催化剂在促进TiO光催化剂将硝基芳烃选择性氢化为胺类反应中的独特晶面效应。活性测试表明,具有{111}晶面的Pd NO是比具有暴露{100}晶面的Pd NC更高效的助催化剂。制备的TiO-Pd NO复合材料与裸TiO相比,光催化氢化速率提高了900%,而TiO-Pd NC样品仅显示光活性提高了200%。微观机理研究表明,Pd NO独特的光活性提高归因于肖特基势垒高度的同时调节和表面反应物的富集:(i)费米能级较低的Pd NO会导致TiO的能带弯曲比Pd NC更陡(即更高的肖特基势垒),这在促进界面分离和抑制光激发电荷对的复合方面更有效;(ii)Pd的{111}晶面具有更高的硝基芳烃吸附能力,尤其是更强的氢富集能力,从而加速了表面氢化过程并导致更高的反应速率。这项工作强调了通过合理控制助催化剂的晶面来提高光催化氢化性能。