IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3778-3791. doi: 10.1109/TNNLS.2021.3054423. Epub 2022 Aug 3.
The human brain is the gold standard of adaptive learning. It not only can learn and benefit from experience, but also can adapt to new situations. In contrast, deep neural networks only learn one sophisticated but fixed mapping from inputs to outputs. This limits their applicability to more dynamic situations, where the input to output mapping may change with different contexts. A salient example is continual learning-learning new independent tasks sequentially without forgetting previous tasks. Continual learning of multiple tasks in artificial neural networks using gradient descent leads to catastrophic forgetting, whereby a previously learned mapping of an old task is erased when learning new mappings for new tasks. Herein, we propose a new biologically plausible type of deep neural network with extra, out-of-network, task-dependent biasing units to accommodate these dynamic situations. This allows, for the first time, a single network to learn potentially unlimited parallel input to output mappings, and to switch on the fly between them at runtime. Biasing units are programed by leveraging beneficial perturbations (opposite to well-known adversarial perturbations) for each task. Beneficial perturbations for a given task bias the network toward that task, essentially switching the network into a different mode to process that task. This largely eliminates catastrophic interference between tasks. Our approach is memory-efficient and parameter-efficient, can accommodate many tasks, and achieves the state-of-the-art performance across different tasks and domains.
人类大脑是适应性学习的黄金标准。它不仅可以从经验中学习和受益,还可以适应新情况。相比之下,深度神经网络只能学习从输入到输出的一种复杂但固定的映射。这限制了它们在更具动态性的情况下的适用性,在这种情况下,输入到输出的映射可能会随着不同的上下文而改变。一个突出的例子是连续学习——在不忘记以前任务的情况下顺序学习新的独立任务。使用梯度下降在人工神经网络中进行多个任务的连续学习会导致灾难性遗忘,即当学习新任务的新映射时,先前学习的旧任务的映射会被擦除。在此,我们提出了一种新的、具有生物学意义的深度神经网络类型,该网络具有额外的、网络外的、任务相关的偏向单元,以适应这些动态情况。这使得单个网络首次能够学习潜在的无限并行输入到输出映射,并在运行时在它们之间动态切换。通过利用每个任务的有益扰动(与众所周知的对抗性扰动相反)来对偏向单元进行编程。对于给定的任务,有益的扰动会使网络偏向该任务,实质上是将网络切换到不同的模式来处理该任务。这在很大程度上消除了任务之间的灾难性干扰。我们的方法具有记忆效率高和参数效率高的特点,可以容纳多个任务,并在不同的任务和领域中实现了最先进的性能。