Materials Science Course, Faculty of Symbiotic Systems Science and Technology, Fukushima University, Japan.
Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
FEBS Open Bio. 2021 Apr;11(4):1132-1143. doi: 10.1002/2211-5463.13123. Epub 2021 Mar 19.
Lysoplasmalogen-specific phospholipase D (LyPls-PLD) catalyzes reactions in a manner similar to those catalyzed by glycerophosphodiester phosphodiesterase (GDPD) and other well-known PLDs. Although these enzymes hydrolyze the glycerophosphodiester bond, their substrate specificities are completely different. Previously, we reported that LyPls-PLD from Thermocrispum sp. RD004668 shows only 53% activity with 1-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (LysoPAF) relative to the 100% activity it shows with choline lysoplasmalogen (LyPlsCho). Lipoprotein-associated phospholipase A (Lp-PLA ) activity can be used to evaluate for cardiovascular disease. Hence, development of a point-of-care testing kit requires a LysoPAF-specific PLD (LysoPAF-PLD) to measure Lp-PLA activity. Rational site-directed mutagenesis and kinetic analysis were applied to generate LysoPAF-PLD from LyPls-PLD and to clarify the mechanisms underlying the substrate-recognition ability of LyPls-PLD. Our results suggest that LyPls-PLD variants A47, M71, N173, F211, and W282 are possibly involved in substrate recognition and that F211L may substantially alter substrate preference. Moreover, the specific activity ratio LysoPAF/LyPlsCho corresponding to F211L was up to 25-fold higher than that corresponding to the wild-type enzyme. Thus, we succeeded in switching from LyPlsCho- to LysoPAF-PLD. These results suggest that the F211L variant may be utilized to measure Lp-PLA activity. Kinetic analyses demonstrated that product release was the rate-limiting step of the reaction, with flexibility of the sn-1 ether-linked vinyl/alkyl chain of the substrate being essential for substrate binding and product release. Our findings may lead to a better understanding of the differences between homologous enzymes (such as PLD, sphingomyelinase D, and GDPD of the phosphatidylinositol-phosphodiesterase superfamily) in relation to substrate recognition. ENZYME: EC 3.1.4.2 (currently assigned).
溶血磷脂酰基特异性磷脂酶 D(LyPls-PLD)以类似于甘油磷酸二酯磷酸二酯酶(GDPD)和其他知名 PLD 催化的方式催化反应。尽管这些酶水解甘油磷酸二酯键,但它们的底物特异性却完全不同。先前,我们报道了来自 Thermocrispum sp. RD004668 的 LyPls-PLD 仅对 1-十六烷基-2-羟基-sn-甘油-3-磷酸胆碱(LysoPAF)表现出相对 100%的活性,而对胆碱溶血磷脂酰基(LyPlsCho)表现出 53%的活性。脂蛋白相关磷脂酶 A(Lp-PLA)活性可用于评估心血管疾病。因此,开发即时护理检测试剂盒需要一种特异性针对 LysoPAF 的 PLD(LysoPAF-PLD)来测量 Lp-PLA 活性。本研究通过理性的定点突变和动力学分析,从 LyPls-PLD 中生成 LysoPAF-PLD,并阐明了 LyPls-PLD 底物识别能力的机制。我们的结果表明,LyPls-PLD 变体 A47、M71、N173、F211 和 W282 可能参与了底物识别,而 F211L 可能会极大地改变底物偏好。此外,与野生型酶相比,F211L 对应的 LysoPAF/LyPlsCho 比活比值高达 25 倍。因此,我们成功地从 LyPlsCho 到 LysoPAF-PLD 的转换。这些结果表明,F211L 变体可用于测量 Lp-PLA 活性。动力学分析表明,产物释放是反应的限速步骤,底物 sn-1 醚键连接的乙烯基/烷基链的灵活性对于底物结合和产物释放至关重要。我们的研究结果可能有助于更好地理解同工酶(如磷脂酰肌醇磷酸二酯酶超家族的 PLD、鞘磷脂酶 D 和 GDPD)在底物识别方面的差异。酶:EC 3.1.4.2(目前指定)。