Tang Yanan, Chen Weiguang, Zhao Gao, Teng Da, Cui Yingqi, Li Zhaohan, Feng Zhen, Dai Xianqi
Quantum Materials Research Center, College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, 450044, China.
School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
Chemphyschem. 2021 Mar 17;22(6):606-618. doi: 10.1002/cphc.202001021. Epub 2021 Feb 25.
Noble metal single-atom catalysts (NM-SACs) anchored at novel graphene-like supports has attracted enormous interests. Gas sensitivity, catalytic activity, and d-band centers of single NM (Pt and Pd) atoms at graphenylene (graphenylene-NM) are investigated using first-principle calculations. The adsorption geometries of gas reactants on graphenylene-NM sheets are analyzed. It is found that the adsorption energies of reactant species on graphenylene-Pt are larger than those on graphenylene-Pd, because the d-band center of the Pt atom is closeser to the Fermi level. The NO and CO oxidation reactions on graphenylene-NM are investigated via four catalytic mechanisms, including Langmuir-Hinshelwood (LH), Eley-Rideal (ER), New ER (NER), and termolecular ER (TER). The results show that the NO and CO oxidations via LH and TER mechanisms can occur owing to the relatively small energy barriers. Moreover, the interaction of 2NO+2CO via ER mechanism is the energetically more favorable reaction. Although the NO oxidation via the NER mechanism has rather low energy barriers, the reaction is unlikely to occur due to the low adsorption energy of O compared with CO and NO. This research may provide guidance for exploring the catalytic performance of SACs on graphene-like materials to remove toxic gas molecules.
锚定在新型类石墨烯载体上的贵金属单原子催化剂(NM-SACs)引起了极大的关注。使用第一性原理计算研究了亚苯基(亚苯基-NM)上单个NM(Pt和Pd)原子的气敏性、催化活性和d带中心。分析了气体反应物在亚苯基-NM片材上的吸附几何结构。发现反应物在亚苯基-Pt上的吸附能大于在亚苯基-Pd上的吸附能,因为Pt原子的d带中心更接近费米能级。通过四种催化机制研究了亚苯基-NM上的NO和CO氧化反应,包括朗缪尔-欣谢尔伍德(LH)、埃利-里德(ER)、新ER(NER)和三分子ER(TER)。结果表明,由于能垒相对较小,通过LH和TER机制的NO和CO氧化可以发生。此外,通过ER机制的2NO+2CO相互作用在能量上是更有利的反应。尽管通过NER机制的NO氧化具有相当低的能垒,但由于与CO和NO相比,O的吸附能较低,该反应不太可能发生。这项研究可能为探索SACs在类石墨烯材料上去除有毒气体分子的催化性能提供指导。