Suppr超能文献

使用深度神经网络对出生体重表型进行分类,以纳入遗传评估。

Categorization of birth weight phenotypes for inclusion in genetic evaluations using a deep neural network.

机构信息

Department of Animal Science, University of Nebraska, Lincoln, NE 68583, USA.

Theta Solutions, LLC, Olympia, WA, USA.

出版信息

J Anim Sci. 2021 Mar 1;99(3). doi: 10.1093/jas/skab053.

Abstract

Birth weight (BW) serves as a valuable indicator of the economically relevant trait of calving ease (CE), and erroneous data collection for BW could impact genetic evaluations for CE. The objective of the current study was to evaluate the use of deep neural networks (DNNs) for classifying contemporary groups (CGs) based on the method used to generate BW phenotypes. CGs (n = 120,000,000) ranging between 10 and 250 animals were simulated assuming 12 data collection and CG formation scenarios that could impact CG phenotypic variance, including weights recorded with a digital scale (REAL), hoof tape (TAPE), erroneous data collection (DIRTY), and those that were fabricated (FAB). The performance of eight activation functions (AFs; ReLu, Sigmoid, Exponential, ReLu6, Softmax, Softplus, Leaky ReLu, and Tanh) was evaluated. Four hidden layers were used with seven different scenarios relative to the number of neurons. Simulations were replicated 10 times. In general, accuracy (proportion of correct predictions) across AF and numbers of neurons were similar, with mean correlations ranging between 0.91 and 0.99. The AF ReLu, Sigmoid, Exponential, and ReLu6 had the greatest consistency (mean pair-wise correlation among replicates) with an average correlation of greater than 0.85. Independent of the number of neurons used, the sigmoid function produced the highest accuracy (0.99) and consistency (0.93). The model with the greatest accuracy and consistency was then applied to real BW data supplied by the American Hereford Association. In the real data, the lowest phenotypic variance was for FAB CG (2.65 kg2), REAL CG had the largest (15.84 kg2), and TAPE CG was intermediate (6.84 kg2). To investigate the potential impact of FAB data on routine genetic evaluations, CGs classified as FAB in 90% or more of the replicates were removed from the evaluation for CE, and the rank of resulting genetic predictions were compared with the case where records were not removed. The removal of FAB CG had a moderate impact on the prediction of CE expected progeny differences, primarily for animals with intermediate to high accuracy. The results suggest that a well-trained DNN can be effectively used to classify data based on quality metrics prior to the inclusion in routine genetic evaluation.

摘要

出生体重(BW)是产犊容易度(CE)这一经济相关性状的重要指标,而 BW 的错误数据收集可能会影响 CE 的遗传评估。本研究的目的是评估深度神经网络(DNN)在基于生成 BW 表型的方法对当代群体(CG)进行分类的应用。模拟了 12 种数据收集和 CG 形成情景下的 CG(n=120000000,范围在 10 到 250 只动物之间),这些情景可能会影响 CG 表型方差,包括使用数字秤(REAL)、蹄带(TAPE)、错误数据收集(DIRTY)和伪造数据(FAB)记录的体重。评估了 8 种激活函数(AF;ReLU、Sigmoid、Exponential、ReLU6、Softmax、Softplus、Leaky ReLu 和 Tanh)的性能。使用 4 个隐藏层,相对于神经元数量有 7 种不同的场景。模拟重复了 10 次。一般来说,在 AF 和神经元数量上,准确率(正确预测的比例)相似,相关系数在 0.91 到 0.99 之间。ReLU、Sigmoid、Exponential 和 ReLu6 等 AF 的一致性最好(重复之间的平均相关系数大于 0.85)。独立于使用的神经元数量,Sigmoid 函数产生了最高的准确率(0.99)和一致性(0.93)。然后将具有最高准确率和一致性的模型应用于美国海弗拉特协会提供的真实 BW 数据。在真实数据中,FAB CG 的表型方差最低(2.65kg2),REAL CG 的表型方差最大(15.84kg2),TAPE CG 居中(6.84kg2)。为了研究 FAB 数据对常规遗传评估的潜在影响,从 CE 的评估中去除了 90%或更多重复分类为 FAB 的 CG,然后比较了去除记录前后的遗传预测排名。从评估中去除 FAB CG 对 CE 预期后代差异的预测有中等影响,主要是对中等至高准确性的动物。结果表明,经过良好训练的 DNN 可以有效地用于在常规遗传评估之前根据质量指标对数据进行分类。

相似文献

6
Reproductive and some peri-natal variables in a mixed breed beef cattle herd.杂种肉牛群的繁殖及一些围产期变量。
J Anim Breed Genet. 1994 Jan 12;111(1-6):52-64. doi: 10.1111/j.1439-0388.1994.tb00437.x.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验