Suppr超能文献

基于拉普拉斯核最大相关熵准则的鲁棒椭圆拟合

Robust Ellipse Fitting With Laplacian Kernel Based Maximum Correntropy Criterion.

作者信息

Hu Chenlong, Wang Gang, Ho K C, Liang Junli

出版信息

IEEE Trans Image Process. 2021;30:3127-3141. doi: 10.1109/TIP.2021.3058785. Epub 2021 Feb 24.

Abstract

The performance of ellipse fitting may significantly degrade in the presence of outliers, which can be caused by occlusion of the object, mirror reflection or other objects in the process of edge detection. In this paper, we propose an ellipse fitting method that is robust against the outliers, and thus maintaining stable performance when outliers can be present. We formulate an optimization problem for ellipse fitting based on the maximum entropy criterion (MCC), having the Laplacian as the kernel function from the well-known fact that the l -norm error measure is robust to outliers. The optimization problem is highly nonlinear and non-convex, and thus is very difficult to solve. To handle this difficulty, we divide it into two subproblems and solve the two subproblems in an alternate manner through iterations. The first subproblem has a closed-form solution and the second one is cast as a convex second-order cone program (SOCP) that can reach the global solution. By so doing, the alternate iterations always converge to an optimal solution, although it can be local instead of global. Furthermore, we propose a procedure to identify failed fitting of the algorithm caused by local convergence to a wrong solution, and thus, it reduces the probability of fitting failure by restarting the algorithm at a different initialization. The proposed robust ellipse fitting method is next extended to the coupled ellipses fitting problem. Both simulated and real data verify the superior performance of the proposed ellipse fitting method over the existing methods.

摘要

在存在异常值的情况下,椭圆拟合的性能可能会显著下降,这些异常值可能是由物体遮挡、镜面反射或边缘检测过程中的其他物体引起的。在本文中,我们提出了一种对异常值具有鲁棒性的椭圆拟合方法,因此在可能存在异常值时能保持稳定的性能。我们基于最大熵准则(MCC)为椭圆拟合制定了一个优化问题,从众所周知的l -范数误差度量对异常值具有鲁棒性这一事实出发,将拉普拉斯函数作为核函数。该优化问题是高度非线性和非凸的,因此很难求解。为了解决这个困难,我们将其分为两个子问题,并通过迭代以交替的方式求解这两个子问题。第一个子问题有一个闭式解,第二个子问题被转化为一个可以得到全局解的凸二阶锥规划(SOCP)。通过这样做,交替迭代总是收敛到一个最优解,尽管它可能是局部最优而不是全局最优。此外,我们提出了一种程序来识别由局部收敛到错误解导致的算法拟合失败,因此,通过在不同的初始化下重新启动算法,它降低了拟合失败的概率。接下来,将所提出的鲁棒椭圆拟合方法扩展到耦合椭圆拟合问题。模拟数据和实际数据都验证了所提出的椭圆拟合方法相对于现有方法的优越性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验