Zhang Yi-Jiao, Yang Kai-Cheng, Radicchi Filippo
Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, China.
Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA.
Phys Rev E. 2021 Jan;103(1-1):012305. doi: 10.1103/PhysRevE.103.012305.
The fundamental idea of embedding a network in a metric space is rooted in the principle of proximity preservation. Nodes are mapped into points of the space with pairwise distance that reflects their proximity in the network. Popular methods employed in network embedding either rely on implicit approximations of the principle of proximity preservation or implement it by enforcing the geometry of the embedding space, thus hindering geometric properties that networks may spontaneously exhibit. Here we take advantage of a model-free embedding method explicitly devised for preserving pairwise proximity and characterize the geometry emerging from the mapping of several networks, both real and synthetic. We show that the learned embedding has simple and intuitive interpretations: the distance of a node from the geometric center is representative for its closeness centrality, and the relative positions of nodes reflect the community structure of the network. Proximity can be preserved in relatively low-dimensional embedding spaces, and the hidden geometry displays optimal performance in guiding greedy navigation regardless of the specific network topology. We finally show that the mapping provides a natural description of contagion processes on networks, with complex spatiotemporal patterns represented by waves propagating from the geometric center to the periphery. The findings deepen our understanding of the model-free hidden geometry of complex networks.
将网络嵌入度量空间的基本思想源于接近度保持原则。节点被映射到空间中的点,其成对距离反映了它们在网络中的接近程度。网络嵌入中使用的流行方法要么依赖于对接近度保持原则的隐式近似,要么通过强制嵌入空间的几何形状来实现,从而阻碍了网络可能自发展现的几何特性。在此,我们利用一种专门为保持成对接近度而设计的无模型嵌入方法,并刻画了从几个真实和合成网络的映射中出现的几何形状。我们表明,学习到的嵌入具有简单直观的解释:节点到几何中心的距离代表其接近中心性,节点的相对位置反映了网络的社区结构。接近度可以在相对低维的嵌入空间中得到保持,并且无论特定的网络拓扑如何,隐藏的几何形状在引导贪婪导航方面都表现出最佳性能。我们最终表明,该映射为网络上的传播过程提供了一种自然描述,复杂的时空模式由从几何中心向外围传播的波表示。这些发现加深了我们对复杂网络无模型隐藏几何形状的理解。