Dubois Alizée, Bonamy Daniel
Université Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, France.
ENS Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69364 Lyon, France.
Phys Rev E. 2021 Jan;103(1-1):013004. doi: 10.1103/PhysRevE.103.013004.
We examine theoretically and numerically fast propagation of a tensile crack along unidimensional strips with periodically evolving toughness. In such dynamic fracture regimes, crack front waves form and transport front disturbances along the crack edge at speed less than the Rayleigh wave speed and depending on the crack speed. In this configuration, standing front waves dictate the spatiotemporal evolution of the local crack front speed, which takes a specific scaling form. Analytical examination of both the short-time and long-time limits of the problem reveals the parameter dependency with strip wavelength, toughness contrast and overall fracture speed. Implications and generalization to unidimensional strips of arbitrary shape are lastly discussed.
我们从理论和数值上研究了拉伸裂纹在韧性周期性演化的一维条带上的快速传播。在这种动态断裂状态下,裂纹前沿波形成并以小于瑞利波速度且取决于裂纹速度的速度沿裂纹边缘传输前沿扰动。在这种配置中,驻波前沿决定了局部裂纹前沿速度的时空演化,该速度具有特定的标度形式。对该问题的短期和长期极限的分析研究揭示了与条带波长、韧性对比度和整体断裂速度的参数依赖性。最后讨论了对任意形状一维条带的影响和推广。