Suppr超能文献

Emergence and stability of periodic two-cluster states for ensembles of excitable units.

作者信息

Ronge Robert, Zaks Michael A

机构信息

Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.

出版信息

Phys Rev E. 2021 Jan;103(1-1):012206. doi: 10.1103/PhysRevE.103.012206.

Abstract

We study dynamics in ensembles of identical excitable units with global repulsive interaction. Starting from active rotators with additional higher order Fourier modes in on-site dynamics, we observe, at sufficiently strong repulsive coupling, large-scale collective oscillations in which the elements form two separate clusters. Transitions from quiescence to clustered oscillations are caused by global bifurcations involving the unstable clustered steady states. For clusters of equal size, the scenarios evolve either through simultaneous formation of two heteroclinic trajectories or through two simultaneous saddle-node bifurcations on invariant circles. If the sizes of clusters differ, two global bifurcations are separated in the parameter space. Stability of clusters with respect to splitting perturbations depends on the kind of higher order corrections to on-site dynamics; we show that for periodic oscillations of two equal clusters the Watanabe-Strogatz integrability marks a change of stability. By extending our studies to ensembles of voltage-coupled Morris-Lecar neurons, we demonstrate that similar bifurcations and switches in stability occur also for more elaborate models in higher dimensions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验