Department of Chemistry, University of California, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2021 Mar 3;143(8):3104-3112. doi: 10.1021/jacs.0c10626. Epub 2021 Feb 18.
Although photoinduced proton-coupled electron transfer (PCET) plays an essential role in photosynthesis, a full understanding of the mechanism is still lacking due to the complex nonequilibrium dynamics arising from the strongly coupled electronic and nuclear degrees of freedom. Here we report the photoinduced PCET dynamics of a biomimetic model system investigated by means of transient IR and two-dimensional electronic-vibrational (2DEV) spectroscopies, IR spectroelectrochemistry (IRSEC), and calculations utilizing long-range-corrected hybrid density functionals. This collective experimental and theoretical effort provides a nuanced picture of the complicated dynamics and synergistic motions involved in photoinduced PCET. In particular, the evolution of the 2DEV line shape, which is highly sensitive to the mixing of vibronic states, is interpreted by accurate computational modeling of the charge separated state and is shown to represent a gradual change in electron density distribution associated with a dihedral twist that occurs on a 120 fs time scale.
尽管光诱导质子耦合电子转移(PCET)在光合作用中起着至关重要的作用,但由于电子和核自由度的强耦合所产生的复杂非平衡动力学,对其机制的全面理解仍有待深入。在这里,我们通过瞬态红外和二维电子-振动(2DEV)光谱、红外光谱电化学(IRSEC)以及利用长程校正混合密度泛函进行的计算,报道了一种仿生模型系统的光诱导 PCET 动力学。这项综合实验和理论研究提供了一幅复杂的光诱导 PCET 动力学和协同运动的细致画面。特别是,2DEV 谱线形状的演化,该演化对振子态的混合非常敏感,通过对分离电荷状态的精确计算建模进行解释,并表明它代表了与二面角扭曲相关的电子密度分布的逐渐变化,该扭曲发生在 120 fs 的时间尺度上。