Thayyil Raju Lijun, Koshkina Olga, Tan Huanshu, Riedinger Andreas, Landfester Katharina, Lohse Detlef, Zhang Xuehua
Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute for Nanotechnology, Max Planck Center for Complex Fluid Dynamics, and J. M. Burgers Centre for Fluid Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
ACS Nano. 2021 Mar 23;15(3):4256-4267. doi: 10.1021/acsnano.0c06814. Epub 2021 Feb 19.
Supraparticles are large clusters of much smaller colloidal particles. Controlling the shape and anisotropy of supraparticles can enhance their functionality, enabling applications in fields such as optics, magnetics, and medicine. The evaporation of self-lubricating colloidal ouzo droplets is an easy and efficient strategy to create supraparticles, overcoming the problem of the "coffee-stain effect" during drop evaporation. Yet, the parameters that control the shape of the supraparticles formed in such evaporating droplets are not fully understood. Here, we show that the size of the colloidal particles determines the shape of the supraparticle. We compared the shape of the supraparticles made of seven different sizes of spherical silica particles, namely from 20 to 1000 nm, and of the mixtures of small and large colloidal particles at different mixing ratios. Specifically, our measurements revealed that the supraparticle formation proceeds the formation of a flexible shell of colloidal particles at the rapidly moving interfaces of the evaporating droplet. The time when the shell ceases to shrink and loses its flexibility is closely related to the size of particles. A lower , as observed for smaller colloidal particles, leads to a flat pancake-like supraparticle, in contrast to a more curved American football-like supraparticle from larger colloidal particles. Furthermore, using a mixture of large and small colloidal particles, we obtained supraparticles that display a spatial variation in particle distribution, with small colloids forming the outer surface of the supraparticle. Our findings provide a guideline for controlling the supraparticle shape and the spatial distribution of the colloidal particles in supraparticles by simply self-lubricating ternary drops filled with colloidal particles.
超粒子是由小得多的胶体粒子组成的大聚集体。控制超粒子的形状和各向异性可以增强其功能,从而使其能够应用于光学、磁学和医学等领域。自润滑胶体茴香酒液滴的蒸发是一种简单有效的制备超粒子的策略,克服了液滴蒸发过程中的“咖啡斑效应”问题。然而,控制在这种蒸发液滴中形成的超粒子形状的参数尚未完全了解。在这里,我们表明胶体粒子的大小决定了超粒子的形状。我们比较了由七种不同尺寸(即20至1000纳米)的球形二氧化硅粒子制成的超粒子的形状,以及不同混合比例的大小胶体粒子混合物的形状。具体而言,我们的测量结果表明,超粒子的形成过程是在蒸发液滴快速移动的界面处形成一层由胶体粒子组成的柔性壳。壳停止收缩并失去其柔韧性的时间与粒子大小密切相关。如较小胶体粒子所观察到的,较低的(此处原文似乎不完整)会导致形成扁平薄饼状的超粒子,而较大胶体粒子则形成更弯曲的橄榄球状超粒子。此外,通过使用大小胶体粒子的混合物,我们获得了超粒子,其在粒子分布上呈现出空间变化,小胶体形成超粒子的外表面。我们的研究结果为通过简单地填充胶体粒子的自润滑三元液滴来控制超粒子形状以及超粒子中胶体粒子的空间分布提供了指导。