Fernandes Eduarda, Benfeito Sofia, Cagide Fernando, Gonçalves Hugo, Bernstorff Sigrid, Nieder Jana B, Cd Real Oliveira M Elisabete, Borges Fernanda, Lúcio Marlene
Departamento de Física da Universidade do Minho, CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Braga, 4710-057, Portugal.
Ultrafast Bio- and Nanophotonics Group, INL - International Iberian Nanotechnology Laboratory, Braga, Portugal.
Nanotechnol Sci Appl. 2021 Feb 9;14:7-27. doi: 10.2147/NSA.S289355. eCollection 2021.
AntiOxCIN is a novel mitochondriotropic antioxidant developed to minimize the effects of oxidative stress on neurodegenerative diseases. Prior to an investment in pre-clinical in vivo studies, it is important to apply in silico and biophysical cell-free in vitro studies to predict AntiOxCIN biodistribution profile, respecting the need to preserve animal health in accordance with the EU principles (Directive 2010/63/EU). Accordingly, we propose an innovative toolbox of biophysical studies and mimetic models of biological interfaces, such as nanosystems with different compositions mimicking distinct membrane barriers and human serum albumin (HSA).
Intestinal and cell membrane permeation of AntiOxCIN was predicted using derivative spectrophotometry. AntiOxCIN -HSA binding was evaluated by intrinsic fluorescence quenching, synchronous fluorescence, and dynamic/electrophoretic light scattering. Steady-state and time-resolved fluorescence quenching was used to predict AntiOxCIN-membrane orientation. Fluorescence anisotropy, synchrotron small- and wide-angle X-ray scattering were used to predict lipid membrane biophysical impairment caused by AntiOxCIN distribution.
We found that AntiOxCIN has the potential to permeate the gastrointestinal tract. However, its biodistribution and elimination from the body might be affected by its affinity to HSA (>90%) and by its steady-state volume of distribution ( =1.89± 0.48 L∙Kg). AntiOxCIN is expected to locate parallel to the membrane phospholipids, causing a bilayer stiffness effect. AntiOxCIN is also predicted to permeate through blood-brain barrier and reach its therapeutic target - the brain.
Drug interactions with biological interfaces may be evaluated using membrane model systems and serum proteins. This knowledge is important for the characterization of drug partitioning, positioning and orientation of drugs in membranes, their effect on membrane biophysical properties and the study of serum protein binding. The analysis of these interactions makes it possible to collect valuable knowledge on the transport, distribution, accumulation and, eventually, therapeutic impact of drugs which may aid the drug development process.
抗氧辛(AntiOxCIN)是一种新型的线粒体靶向抗氧化剂,旨在将氧化应激对神经退行性疾病的影响降至最低。在投资进行临床前体内研究之前,重要的是先进行计算机模拟和无细胞生物物理体外研究,以预测抗氧辛的生物分布情况,同时要根据欧盟原则(指令2010/63/EU)保护动物健康的需要。因此,我们提出了一个创新的生物物理研究工具箱和生物界面模拟模型,例如具有不同组成的纳米系统,可模拟不同的膜屏障和人血清白蛋白(HSA)。
使用导数分光光度法预测抗氧辛的肠道和细胞膜渗透性。通过内在荧光猝灭、同步荧光以及动态/电泳光散射评估抗氧辛与HSA的结合。稳态和时间分辨荧光猝灭用于预测抗氧辛在膜上的取向。荧光各向异性、同步加速器小角和广角X射线散射用于预测抗氧辛分布引起的脂质膜生物物理损伤。
我们发现抗氧辛有可能渗透胃肠道。然而,其在体内的生物分布和消除可能会受到其与HSA的亲和力(>90%)及其稳态分布容积(=1.89±0.48 L∙Kg)的影响。预计抗氧辛会与膜磷脂平行定位,从而产生双层硬度效应。还预测抗氧辛会穿过血脑屏障并到达其治疗靶点——大脑。
药物与生物界面的相互作用可以使用膜模型系统和血清蛋白进行评估。这些知识对于表征药物在膜中的分配、定位和取向、它们对膜生物物理性质的影响以及血清蛋白结合研究非常重要。对这些相互作用的分析使得收集有关药物的转运、分布、积累以及最终治疗效果的有价值知识成为可能,这可能有助于药物开发过程。