Fernandes Eduarda, Costa Rui R, Machado Raúl, Reis Rui L, Pashkuleva Iva, Lúcio Marlene
CF-UM-UP Centro de Física das Universidades do Minho e Porto Universidade do Minho 4710-057 Braga Portugal.
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, and ICVS/3B's, PT Government Associate Laboratory 4805-017 Braga/Guimarães Portugal.
Small Sci. 2024 Mar 1;4(4):2300271. doi: 10.1002/smsc.202300271. eCollection 2024 Apr.
Extensive research has been conducted on biomimetic interfaces mimicking the complex and diverse microenvironment of cell membranes to gain insights into bioactive compound interactions and membrane biophysics modulation. The present study proposes an innovative approach that combines five prospective label-free methodologies (derivative spectroscopy, synchrotron small- and wide-angle X-Ray scattering, attenuated total reflection-Fourier-transform infrared spectroscopy, quartz-crystal microbalance with dissipation, and surface plasmon resonance) to showcase their synergistic capabilities and complementarity in investigating drug-membrane interactions. This multitechnique approach combines the real-time monitoring of the adsorption process under continuous flow conditions with the steady-state perspective of this process. As a proof of concept, the interaction of three bioactive compounds (caffeine, testosterone, and diclofenac) with two biomimetic membrane interfaces (multistacked lipid bilayers and supported lipid bilayers) mimicking the more ordered lipid transient phases, with and without cholesterol ( and ), that are responsible for a variety of membrane-associated biological activities, is investigated. The biophysical effects of the bioactives are discussed using complementary data from real-time and steady-state experiments, including membrane adsorption and distribution, predicted location, and induced changes in order and fluidity, encompassing bilayer thickness, hydration, and area per lipid molecule.
为了深入了解生物活性化合物相互作用和膜生物物理调节,人们对模拟细胞膜复杂多样微环境的仿生界面进行了广泛研究。本研究提出了一种创新方法,该方法结合了五种前瞻性的无标记方法(导数光谱法、同步加速器小角和广角X射线散射法、衰减全反射傅里叶变换红外光谱法、带耗散监测的石英晶体微天平法和表面等离子体共振法),以展示它们在研究药物-膜相互作用方面的协同能力和互补性。这种多技术方法将连续流动条件下吸附过程的实时监测与该过程的稳态视角相结合。作为概念验证,研究了三种生物活性化合物(咖啡因、睾酮和双氯芬酸)与两种仿生膜界面(多层脂质双层和支撑脂质双层)的相互作用,这两种仿生膜界面模拟了更有序的脂质瞬态相,有或没有胆固醇(分别为 和 ),这些脂质瞬态相负责多种与膜相关的生物活性。利用来自实时和稳态实验的补充数据,包括膜吸附和分布、预测位置以及诱导的有序性和流动性变化,涵盖双层厚度、水合作用和每个脂质分子的面积,讨论了生物活性物质的生物物理效应。