Suppr超能文献

二维反铁电隧道结

Two-Dimensional Antiferroelectric Tunnel Junction.

作者信息

Ding Jun, Shao Ding-Fu, Li Ming, Wen Li-Wei, Tsymbal Evgeny Y

机构信息

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA.

College of Science, Henan University of Engineering, Zhengzhou 451191, People's Republic of China.

出版信息

Phys Rev Lett. 2021 Feb 5;126(5):057601. doi: 10.1103/PhysRevLett.126.057601.

Abstract

Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric materials opens a new route to realize tunnel junctions with new functionalities and nm-scale dimensions. Because of the weak coupling between the atomic layers in these materials, the relative dipole alignment between them can be controlled by applied voltage. This allows transitions between ferroelectric and antiferroelectric orderings, resulting in significant changes of the electronic structure. Here, we propose to realize 2D antiferroelectric tunnel junctions (AFTJs), which exploit this new functionality, based on bilayer In_{2}X_{3} (X=S, Se, Te) barriers and different 2D electrodes. Using first-principles density functional theory calculations, we demonstrate that the In_{2}X_{3} bilayers exhibit stable ferroelectric and antiferroelectric states separated by sizable energy barriers, thus supporting a nonvolatile switching between these states. Using quantum-mechanical modeling of the electronic transport, we explore in-plane and out-of-plane tunneling across the In_{2}S_{3} van der Waals bilayers, and predict giant tunneling electroresistance effects and multiple nonvolatile resistance states driven by ferroelectric-antiferroelectric order transitions. Our proposal opens a new route to realize nanoscale memory devices with ultrahigh storage density using 2D AFTJs.

摘要

铁电隧道结(FTJ)由两个被薄铁电势垒隔开的金属电极组成,作为纳米级电阻开关器件,最近在技术应用方面引起了极大的关注。到目前为止,大多数现有的铁电隧道结都基于钙钛矿氧化物势垒层。二维(2D)范德华铁电材料的最新发现为实现具有新功能和纳米级尺寸的隧道结开辟了一条新途径。由于这些材料中原子层之间的耦合较弱,它们之间的相对偶极子排列可以通过施加电压来控制。这允许在铁电和反铁电有序之间进行转变,从而导致电子结构的显著变化。在此,我们提议基于双层In₂X₃(X = S、Se、Te)势垒和不同的二维电极来实现利用这种新功能的二维反铁电隧道结(AFTJ)。通过第一性原理密度泛函理论计算,我们证明In₂X₃双层表现出由相当大的能垒分隔的稳定铁电和反铁电状态,从而支持这些状态之间的非易失性切换。利用电子输运的量子力学模型,我们研究了穿过In₂S₃范德华双层的面内和面外隧穿,并预测了由铁电 - 反铁电有序转变驱动产生的巨大隧穿电阻效应和多个非易失性电阻状态。我们的提议为使用二维反铁电隧道结实现具有超高存储密度的纳米级存储器件开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验