Ji Junyi, Yu Guoliang, Xu Changsong, Xiang H J
Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai, 200433, China.
Shanghai Qi Zhi Institute, Shanghai, 200030, China.
Nat Commun. 2024 Jan 2;15(1):135. doi: 10.1038/s41467-023-44453-y.
For an ordinary ferroelectric, the magnitude of the spontaneous electric polarization is at least one order of magnitude smaller than that resulting from the ionic displacement of the lattice vectors, and the direction of the spontaneous electric polarization is determined by the point group of the ferroelectric. Here, we introduce a new class of ferroelectricity termed Fractional Quantum Ferroelectricity. Unlike ordinary ferroelectrics, the polarization of Fractional Quantum Ferroelectricity arises from substantial atomic displacements that are comparable to lattice constants. Applying group theory analysis, we identify 28 potential point groups that can realize Fractional Quantum Ferroelectricity, including both polar and non-polar groups. The direction of polarization in Fractional Quantum Ferroelectricity is found to always contradict with the symmetry of the "polar" phase, which violates Neumann's principle, challenging conventional symmetry-based knowledge. Through the Fractional Quantum Ferroelectricity theory and density functional calculations, we not only explain the puzzling experimentally observed in-plane polarization of monolayer α-InSe, but also predict polarization in a cubic compound of AgBr. Our findings unveil a new realm of ferroelectric behavior, expanding the understanding and application of these materials beyond the limits of traditional ferroelectrics.
对于普通铁电体,自发极化的大小至少比晶格矢量的离子位移所产生的极化小一个数量级,且自发极化的方向由铁电体的点群决定。在此,我们引入了一类新的铁电性,称为分数量子铁电性。与普通铁电体不同,分数量子铁电性的极化源于与晶格常数相当的大量原子位移。通过群论分析,我们确定了28个可实现分数量子铁电性的潜在点群,包括极性和非极性群。发现分数量子铁电性中的极化方向总是与“极性”相的对称性相矛盾,这违反了诺伊曼原理,挑战了基于传统对称性的知识。通过分数量子铁电性理论和密度泛函计算,我们不仅解释了在单层α-InSe中实验观察到的令人困惑的面内极化现象,还预测了AgBr立方化合物中的极化情况。我们的发现揭示了铁电行为的一个新领域,将这些材料的理解和应用扩展到传统铁电体的极限之外。