IEEE Trans Med Imaging. 2021 Jun;40(6):1542-1554. doi: 10.1109/TMI.2021.3060497. Epub 2021 Jun 1.
Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less output pixel interdependence producing incomplete and unrealistic segmentation results. In this paper, we present a fully automatic deep learning method for robust medical image segmentation by formulating the segmentation problem as a recurrent framework using two systems. The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image. The predicted probabilistic output of the forward system is then encoded by a fully convolutional network (FCN)-based context feedback system. The encoded feature space of the FCN is then integrated back into the forward system's feed-forward learning process. Using the FCN-based context feedback loop allows the forward system to learn and extract more high-level image features and fix previous mistakes, thereby improving prediction accuracy over time. Experimental results, performed on four different clinical datasets, demonstrate our method's potential application for single and multi-structure medical image segmentation by outperforming the state of the art methods. With the feedback loop, deep learning methods can now produce results that are both anatomically plausible and robust to low contrast images. Therefore, formulating image segmentation as a recurrent framework of two interconnected networks via context feedback loop can be a potential method for robust and efficient medical image analysis.
深度学习已成功应用于医学图像分割。它使用卷积神经网络 (CNN) 从定义的像素级目标函数中学习独特的图像特征。然而,这种方法可能会导致输出像素之间的依赖性降低,从而产生不完整和不真实的分割结果。在本文中,我们提出了一种完全自动化的深度学习方法,通过使用两个系统将分割问题表述为一个递归框架,从而实现稳健的医学图像分割。第一个系统是编码器-解码器 CNN 的前向系统,从前馈图像预测分割结果。前向系统的预测概率输出然后由基于全卷积网络 (FCN) 的上下文反馈系统进行编码。然后,将 FCN 的编码特征空间重新集成到前向系统的前馈学习过程中。使用基于 FCN 的上下文反馈循环允许前向系统学习和提取更多的高级图像特征,并纠正以前的错误,从而随着时间的推移提高预测精度。在四个不同的临床数据集上进行的实验结果表明,我们的方法通过优于最先进的方法,具有应用于单结构和多结构医学图像分割的潜力。通过反馈循环,深度学习方法现在可以生成既具有解剖合理性又能抵抗低对比度图像的结果。因此,通过上下文反馈循环将图像分割表述为两个互连网络的递归框架,可能是稳健高效的医学图像分析的一种潜在方法。