Suppr超能文献

基于反馈机制 CNN 的医学图像分割算法。

Medical Image Segmentation Algorithm Based on Feedback Mechanism CNN.

机构信息

School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian JS 223300, China.

School of Information and Electronics, Beijing Institute of Technology, Beijing BJ 100081, China.

出版信息

Contrast Media Mol Imaging. 2019 Aug 1;2019:6134942. doi: 10.1155/2019/6134942. eCollection 2019.

Abstract

With the development of computer vision and image segmentation technology, medical image segmentation and recognition technology has become an important part of computer-aided diagnosis. The traditional image segmentation method relies on artificial means to extract and select information such as edges, colors, and textures in the image. It not only consumes considerable energy resources and people's time but also requires certain expertise to obtain useful feature information, which no longer meets the practical application requirements of medical image segmentation and recognition. As an efficient image segmentation method, convolutional neural networks (CNNs) have been widely promoted and applied in the field of medical image segmentation. However, CNNs that rely on simple feedforward methods have not met the actual needs of the rapid development of the medical field. Thus, this paper is inspired by the feedback mechanism of the human visual cortex, and an effective feedback mechanism calculation model and operation framework is proposed, and the feedback optimization problem is presented. A new feedback convolutional neural network algorithm based on neuron screening and neuron visual information recovery is constructed. So, a medical image segmentation algorithm based on a feedback mechanism convolutional neural network is proposed. The basic idea is as follows: The model for obtaining an initial region with the segmented medical image classifies the pixel block samples in the segmented image. Then, the initial results are optimized by threshold segmentation and morphological methods to obtain accurate medical image segmentation results. Experiments show that the proposed segmentation method has not only high segmentation accuracy but also extremely high adaptive segmentation ability for various medical images. The research in this paper provides a new perspective for medical image segmentation research. It is a new attempt to explore more advanced intelligent medical image segmentation methods. It also provides technical approaches and methods for further development and improvement of adaptive medical image segmentation technology.

摘要

随着计算机视觉和图像分割技术的发展,医学图像分割和识别技术已成为计算机辅助诊断的重要组成部分。传统的图像分割方法依赖于人工手段来提取和选择图像中的边缘、颜色和纹理等信息。它不仅消耗大量的能源和人们的时间,而且还需要一定的专业知识才能获得有用的特征信息,这已经不能满足医学图像分割和识别的实际应用要求。作为一种高效的图像分割方法,卷积神经网络(CNN)已在医学图像分割领域得到广泛推广和应用。然而,基于简单前馈方法的 CNN 尚未满足医学领域快速发展的实际需求。因此,本文受人类视觉皮层反馈机制的启发,提出了一种有效的反馈机制计算模型和操作框架,并提出了反馈优化问题。构建了一种基于神经元筛选和神经元视觉信息恢复的新的反馈卷积神经网络算法。因此,提出了一种基于反馈机制卷积神经网络的医学图像分割算法。其基本思想如下:使用带有分割的医学图像类别的初始区域获取模型对分割图像中的像素块样本进行分类。然后,通过阈值分割和形态学方法对初始结果进行优化,以获得准确的医学图像分割结果。实验表明,所提出的分割方法不仅具有很高的分割精度,而且对各种医学图像具有极高的自适应分割能力。本文的研究为医学图像分割研究提供了新的视角,是探索更先进的智能医学图像分割方法的新尝试。它还为自适应医学图像分割技术的进一步发展和改进提供了技术途径和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3467/6701432/e7e83d4d3201/CMMI2019-6134942.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验