Suppr超能文献

应用新型风险评分加权平均值预测血清 C 反应蛋白水平极高患者的 72 小时死亡率。

Prediction of 72-hour mortality in patients with extremely high serum C-reactive protein levels using a novel weighted average of risk scores.

机构信息

Nara Medical University, Kashihara, Nara, Japan.

Division of General Medicine, Department of Comprehensive Medicine 1, Saitama Medical Center, Jichi Medical University, Saitama, Japan.

出版信息

PLoS One. 2021 Feb 19;16(2):e0246259. doi: 10.1371/journal.pone.0246259. eCollection 2021.

Abstract

The risk factors associated with mortality in patients with extremely high serum C-reactive protein (CRP) levels are controversial. In this retrospective single-center cross-sectional study, the clinical and laboratory data of patients with CRP levels ≥40 mg/dL treated in Saitama Medical Center, Japan from 2004 to 2017 were retrieved from medical records. The primary outcome was defined as 72-hour mortality after the final CRP test. Forty-four mortal cases were identified from the 275 enrolled cases. Multivariate logistic regression analysis (MLRA) was performed to explore the parameters relevant for predicting mortality. As an alternative method of prediction, we devised a novel risk predictor, "weighted average of risk scores" (WARS). WARS features the following: (1) selection of candidate risk variables for 72-hour mortality by univariate analyses, (2) determination of C-statistics and cutoff value for each variable in predicting mortality, (3) 0-1 scoring of each risk variable at the cutoff value, and (4) calculation of WARS by weighted addition of the scores with weights assigned according to the C-statistic of each variable. MLRA revealed four risk variables associated with 72-hour mortality-age, albumin, inorganic phosphate, and cardiovascular disease-with a predictability of 0.829 in C-statistics. However, validation by repeated resampling of the 275 records showed that a set of predictive variables selected by MLRA fluctuated occasionally because of the presence of closely associated risk variables and missing data regarding some variables. WARS attained a comparable level of predictability (0.837) by combining the scores for 10 risk variables, including age, albumin, electrolytes, urea, lactate dehydrogenase, and fibrinogen. Several mutually related risk variables are relevant in predicting 72-hour mortality in patients with extremely high CRP levels. Compared to conventional MLRA, WARS exhibited a favorable performance with flexible coverage of many risk variables while allowing for missing data.

摘要

极高血清 C 反应蛋白(CRP)水平患者的死亡相关风险因素存在争议。在这项回顾性单中心横断面研究中,从日本埼玉医疗中心的病历中检索了 2004 年至 2017 年接受 CRP 水平≥40mg/dL 治疗的患者的临床和实验室数据。主要结局定义为最后一次 CRP 检测后 72 小时的死亡率。从 275 例入组患者中确定了 44 例死亡病例。采用多变量逻辑回归分析(MLRA)探讨与死亡率相关的预测参数。作为预测的替代方法,我们设计了一种新的风险预测因子,“风险评分加权平均值”(WARS)。WARS 具有以下特点:(1)通过单因素分析选择 72 小时死亡率的候选风险变量,(2)确定每个变量预测死亡率的 C 统计量和截止值,(3)根据每个变量的 C 统计量对风险变量进行 0-1 评分,(4)根据每个变量的 C 统计量分配权重,加权相加评分计算 WARS。MLRA 揭示了与 72 小时死亡率相关的四个风险变量-年龄、白蛋白、无机磷和心血管疾病-在 C 统计量中的预测能力为 0.829。然而,通过对 275 份记录的重复重新采样验证表明,由 MLRA 选择的预测变量集偶尔会因存在密切相关的风险变量和某些变量的数据缺失而波动。通过组合年龄、白蛋白、电解质、尿素、乳酸脱氢酶和纤维蛋白原等 10 个风险变量的评分,WARS 达到了可比较的预测能力(0.837)。在预测极高 CRP 水平患者的 72 小时死亡率时,多个相互关联的风险变量具有相关性。与传统的 MLRA 相比,WARS 具有良好的性能,可以灵活涵盖许多风险变量,同时允许存在缺失数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a0/7894915/2343729b5145/pone.0246259.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验