Suppr超能文献

具有四维精度的神经活动时间复用双平面成像。

Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision.

机构信息

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.

RIKEN Center for Advanced Photonics, Saitama, Japan; Department of Advanced Imaging, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan.

出版信息

Neurosci Res. 2021 Oct;171:9-18. doi: 10.1016/j.neures.2021.02.001. Epub 2021 Feb 16.

Abstract

Spatiotemporal patterns of neural activity generate brain functions, such as perception, memory, and behavior. Four-dimensional (4-D: x, y, z, t) analyses of such neural activity will facilitate understanding of brain functions. However, conventional two-photon microscope systems observe single-plane brain tissue alone at a time with cellular resolution. It faces a trade-off between the spatial resolution in the x-, y-, and z-axes and the temporal resolution by a limited point-by-point scan speed. To overcome this trade-off in 4-D imaging, we developed a holographic two-photon microscope for dual-plane imaging. A spatial light modulator (SLM) provided an additional focal plane at a different depth. Temporal multiplexing of split lasers with an optical chopper allowed fast imaging of two different focal planes. We simultaneously recorded the activities of neurons on layers 2/3 and 5 of the cerebral cortex in awake mice in vivo. The present study demonstrated the proof-of-concept of dual-plane two-photon imaging of neural circuits by using the temporally multiplexed SLM-based microscope. The temporally multiplexed holographic microscope, combined with in vivo labeling with genetically encoded probes, enabled 4-D imaging and analysis of neural activities at cellular resolution and physiological timescales. Large-scale 4-D imaging and analysis will facilitate studies of not only the nervous system but also of various biological systems.

摘要

神经活动的时空模式产生了大脑功能,如感知、记忆和行为。对这种神经活动的四维(4-D:x、y、z、t)分析将有助于理解大脑功能。然而,传统的双光子显微镜系统每次只能观察单一层面的脑组织,具有细胞分辨率。它在 x、y 和 z 轴的空间分辨率和通过有限的逐点扫描速度的时间分辨率之间面临权衡。为了克服 4-D 成像中的这种权衡,我们开发了用于双平面成像的全息双光子显微镜。空间光调制器(SLM)在不同的深度提供了一个附加的焦平面。带有光闸的分束激光的时间复用允许快速成像两个不同的焦平面。我们在清醒小鼠的大脑皮层第 2/3 层和第 5 层同时记录神经元的活动。本研究通过使用基于 SLM 的时间复用显微镜证明了双平面双光子成像神经回路的概念验证。时间复用全息显微镜与遗传编码探针的体内标记相结合,实现了细胞分辨率和生理时间尺度的神经活动的 4-D 成像和分析。大规模的 4-D 成像和分析将有助于研究不仅是神经系统,还有各种生物系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验