Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
Trends Genet. 2021 May;37(5):476-487. doi: 10.1016/j.tig.2020.12.003. Epub 2021 Feb 16.
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
最近对复制蛋白中 Fe-S 中心的结构分析以及对 DNA 聚合酶 δ (DNA Pol δ) 亚基结构和功能的深入了解,揭示了该聚合酶在应激条件下复制叉处的关键作用。癌症基因组的测序揭示了多种点突变,这些突变会削弱 DNA Pol δ 催化亚基 POLD1 的活性,而编码辅助亚基 POLD2 和 POLD3 的基因座在很大一部分人类肿瘤中扩增。一致地,DNA Pol δ 对于复制应激的生存至关重要,并参与多种长补丁修复途径。在复制应激条件下,破坏 DNA Pol δ 的非催化亚基的功能和可用性会导致合成致死,为新的治疗方法开辟了道路。