Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.
Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil.
Mol Neurobiol. 2021 Jul;58(7):3015-3030. doi: 10.1007/s12035-021-02317-w. Epub 2021 Feb 19.
Since psychiatric disorders are associated with changes in the development of the nervous system, an energy-dependent mechanism, we investigated whether mitochondrial inhibition during the critical neurodevelopment window in rodents would be able to induce metabolic alterations culminating in psychiatric-like behavior. We treated male Wistar rat puppies (P) with rotenone (Rot), an inhibitor of mitochondrial complex I, from postnatal days 5 to 11 (P5-P11). We demonstrated that at P60 and P120, Rot-treated animals showed hyperlocomotion and deficits in social interaction and aversive contextual memory, features observed in animal models of schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. During adulthood, Rot-treated rodents also presented modifications in CBP and CREB levels in addition to a decrease in mitochondrial biogenesis and Nrf1 expression. Additionally, NFE2L2-activation was not altered in Rot-treated P60 and P120 animals; an upregulation of pNFE2L2/ NFE2L2 was only observed in P12 cortices. Curiously, ATP/ADP levels did not change in all ages evaluated. Rot administration in newborn rodents also promoted modification in Rest and Mecp2 expression, and in synaptic protein levels, named PSD-95, Synaptotagmin-1, and Synaptophysin in the adult rats. Altogether, our data indicate that behavioral abnormalities and changes in synaptic proteins in adulthood induced by neonatal Rot administration might be a result of adjustments in CREB pathways and alterations in mitochondrial biogenesis and Nrf1 expression, rather than a direct deficiency of energy supply, as previously speculated. Consequently, Rot-induced psychiatric-like behavior would be an outcome of alterations in neuronal paths due to mitochondrial deregulation.
由于精神障碍与神经系统发育变化有关,而神经系统发育变化是一种依赖能量的机制,因此我们研究了在啮齿动物的关键神经发育窗口期间抑制线粒体是否能够诱导代谢改变,最终导致类似精神病的行为。我们用鱼藤酮(Rot)处理雄性 Wistar 幼鼠(P),鱼藤酮是线粒体复合物 I 的抑制剂,从出生后第 5 天到第 11 天(P5-P11)。我们证明,在 P60 和 P120,Rot 处理的动物表现出过度活跃、社交互动缺陷和厌恶环境记忆缺陷,这些特征在精神分裂症、自闭症谱系障碍和注意力缺陷多动障碍的动物模型中观察到。在成年期,Rot 处理的啮齿动物还表现出 CBP 和 CREB 水平的改变,以及线粒体生物发生和 Nrf1 表达的减少。此外,Rot 处理的 P60 和 P120 动物的 NFE2L2 激活没有改变;仅在 P12 皮质中观察到 pNFE2L2/NFE2L2 的上调。奇怪的是,所有评估年龄的 ATP/ADP 水平都没有改变。新生啮齿动物的 Rot 给药还促进了 Rest 和 Mecp2 表达以及突触蛋白水平(称为 PSD-95、Synaptotagmin-1 和 Synaptophysin)的改变,在成年大鼠中。总的来说,我们的数据表明,新生期 Rot 给药引起的成年期行为异常和突触蛋白改变可能是由于 CREB 途径的调节以及线粒体生物发生和 Nrf1 表达的改变,而不是先前推测的能量供应直接缺乏的结果。因此,Rot 诱导的类似精神病的行为是由于线粒体失调导致神经元路径改变的结果。