Suppr超能文献

使用非负矩阵分解对 DCE-MRI 进行肿瘤内组织特异性分析的多室模型。

A multicompartment model for intratumor tissue-specific analysis of DCE-MRI using non-negative matrix factorization.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Med Phys. 2021 May;48(5):2400-2411. doi: 10.1002/mp.14793. Epub 2021 Mar 25.

Abstract

PURPOSE

A pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data is subject to inaccuracy and instability partly owing to the partial volume effect (PVE). We proposed a new multicompartment model for a tissue-specific pharmacokinetic analysis in DCE-MRI data to solve the PVE problem and to provide better kinetic parameter maps.

METHODS

We introduced an independent parameter named fractional volumes of tissue compartments in each DCE-MRI pixel to construct a new linear separable multicompartment model, which simultaneously estimates the pixel-wise time-concentration curves and fractional volumes without the need of the pure-pixel assumption. This simplified convex optimization model was solved using a special type of non-negative matrix factorization (NMF) algorithm called the minimum-volume constraint NMF (MVC-NMF).

RESULTS

To test the model, synthetic datasets were established based on the general pharmacokinetic parameters. On well-designed synthetic data, the proposed model reached lower bias and lower root mean square fitting error compared to the state-of-the-art algorithm in different noise levels. In addition, the real dataset from QIN-BREAST-DCE-MRI was analyzed, and we observed an improved pharmacokinetic parameter estimation to distinguish the treatment response to chemotherapy applied to breast cancer.

CONCLUSION

Our model improved the accuracy and stability of the tissue-specific estimation of the fractional volumes and kinetic parameters in DCE-MRI data, and improved the robustness to noise, providing more accurate kinetics for more precise prognosis and therapeutic response evaluation using DCE-MRI.

摘要

目的

动态对比增强磁共振成像(DCE-MRI)数据的药代动力学分析部分受到不准确和不稳定的影响,部分原因是部分体积效应(PVE)。我们提出了一种新的组织特异性药代动力学分析的多室模型,以解决 PVE 问题并提供更好的动力学参数图。

方法

我们在每个 DCE-MRI 像素中引入了一个名为组织隔室分数体积的独立参数,以构建一个新的线性可分离多室模型,该模型无需纯像素假设即可同时估计像素的时间浓度曲线和分数体积。这个简化的凸优化模型使用一种特殊类型的非负矩阵分解(NMF)算法(称为最小体积约束 NMF(MVC-NMF))来解决。

结果

为了测试该模型,我们基于一般药代动力学参数建立了合成数据集。在设计良好的合成数据上,与不同噪声水平下的最先进算法相比,所提出的模型在不同噪声水平下达到了更低的偏差和更低的均方根拟合误差。此外,我们还分析了来自 QIN-BREAST-DCE-MRI 的真实数据集,并观察到了改善的药代动力学参数估计,以区分乳腺癌化疗的治疗反应。

结论

我们的模型提高了 DCE-MRI 数据中分数体积和动力学参数的组织特异性估计的准确性和稳定性,并提高了对噪声的鲁棒性,为使用 DCE-MRI 进行更精确的预后和治疗反应评估提供了更准确的动力学信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验