Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
IEEE Trans Med Imaging. 2011 Dec;30(12):2044-58. doi: 10.1109/TMI.2011.2160276. Epub 2011 Jun 23.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a noninvasive method for evaluating tumor vasculature patterns based on contrast accumulation and washout. However, due to limited imaging resolution and tumor tissue heterogeneity, tracer concentrations at many pixels often represent a mixture of more than one distinct compartment. This pixel-wise partial volume effect (PVE) would have profound impact on the accuracy of pharmacokinetics studies using existing compartmental modeling (CM) methods. We, therefore, propose a convex analysis of mixtures (CAM) algorithm to explicitly mitigate PVE by expressing the kinetics in each pixel as a nonnegative combination of underlying compartments and subsequently identifying pure volume pixels at the corners of the clustered pixel time series scatter plot simplex. The algorithm is supported theoretically by a well-grounded mathematical framework and practically by plug-in noise filtering and normalization preprocessing. We demonstrate the principle and feasibility of the CAM-CM approach on realistic synthetic data involving two functional tissue compartments, and compare the accuracy of parameter estimates obtained with and without PVE elimination using CAM or other relevant techniques. Experimental results show that CAM-CM achieves a significant improvement in the accuracy of kinetic parameter estimation. We apply the algorithm to real DCE-MRI breast cancer data and observe improved pharmacokinetic parameter estimation, separating tumor tissue into regions with differential tracer kinetics on a pixel-by-pixel basis and revealing biologically plausible tumor tissue heterogeneity patterns. This method combines the advantages of multivariate clustering, convex geometry analysis, and compartmental modeling approaches. The open-source MATLAB software of CAM-CM is publicly available from the Web.
动态对比增强磁共振成像(DCE-MRI)提供了一种非侵入性的方法,用于基于对比剂的积累和洗脱来评估肿瘤血管模式。然而,由于成像分辨率有限和肿瘤组织异质性,许多像素的示踪剂浓度通常代表了不止一个独特隔室的混合物。这种像素级别的部分容积效应(PVE)会对使用现有房室模型(CM)方法进行药代动力学研究的准确性产生深远影响。因此,我们提出了一种凸分析混合物(CAM)算法,通过将每个像素中的动力学表示为基础隔室的非负组合,并随后在聚类像素时间序列散点图的角上识别纯体积像素,来明确减轻 PVE。该算法在理论上得到了合理的数学框架的支持,在实践中得到了插件噪声滤波和归一化预处理的支持。我们在涉及两个功能组织隔室的真实合成数据上演示了 CAM-CM 方法的原理和可行性,并比较了使用 CAM 或其他相关技术消除 PVE 前后获得的参数估计的准确性。实验结果表明,CAM-CM 显著提高了动力学参数估计的准确性。我们将该算法应用于真实的 DCE-MRI 乳腺癌数据,并观察到改善的药代动力学参数估计,将肿瘤组织在像素级上分为具有不同示踪剂动力学的区域,并揭示了具有生物学意义的肿瘤组织异质性模式。该方法结合了多元聚类、凸几何分析和房室模型方法的优点。CAM-CM 的开源 MATLAB 软件可从网上获得。