Suppr超能文献

复杂肿瘤的动态对比增强磁共振成像的组织特异性室分析。

Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors.

机构信息

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.

出版信息

IEEE Trans Med Imaging. 2011 Dec;30(12):2044-58. doi: 10.1109/TMI.2011.2160276. Epub 2011 Jun 23.

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides a noninvasive method for evaluating tumor vasculature patterns based on contrast accumulation and washout. However, due to limited imaging resolution and tumor tissue heterogeneity, tracer concentrations at many pixels often represent a mixture of more than one distinct compartment. This pixel-wise partial volume effect (PVE) would have profound impact on the accuracy of pharmacokinetics studies using existing compartmental modeling (CM) methods. We, therefore, propose a convex analysis of mixtures (CAM) algorithm to explicitly mitigate PVE by expressing the kinetics in each pixel as a nonnegative combination of underlying compartments and subsequently identifying pure volume pixels at the corners of the clustered pixel time series scatter plot simplex. The algorithm is supported theoretically by a well-grounded mathematical framework and practically by plug-in noise filtering and normalization preprocessing. We demonstrate the principle and feasibility of the CAM-CM approach on realistic synthetic data involving two functional tissue compartments, and compare the accuracy of parameter estimates obtained with and without PVE elimination using CAM or other relevant techniques. Experimental results show that CAM-CM achieves a significant improvement in the accuracy of kinetic parameter estimation. We apply the algorithm to real DCE-MRI breast cancer data and observe improved pharmacokinetic parameter estimation, separating tumor tissue into regions with differential tracer kinetics on a pixel-by-pixel basis and revealing biologically plausible tumor tissue heterogeneity patterns. This method combines the advantages of multivariate clustering, convex geometry analysis, and compartmental modeling approaches. The open-source MATLAB software of CAM-CM is publicly available from the Web.

摘要

动态对比增强磁共振成像(DCE-MRI)提供了一种非侵入性的方法,用于基于对比剂的积累和洗脱来评估肿瘤血管模式。然而,由于成像分辨率有限和肿瘤组织异质性,许多像素的示踪剂浓度通常代表了不止一个独特隔室的混合物。这种像素级别的部分容积效应(PVE)会对使用现有房室模型(CM)方法进行药代动力学研究的准确性产生深远影响。因此,我们提出了一种凸分析混合物(CAM)算法,通过将每个像素中的动力学表示为基础隔室的非负组合,并随后在聚类像素时间序列散点图的角上识别纯体积像素,来明确减轻 PVE。该算法在理论上得到了合理的数学框架的支持,在实践中得到了插件噪声滤波和归一化预处理的支持。我们在涉及两个功能组织隔室的真实合成数据上演示了 CAM-CM 方法的原理和可行性,并比较了使用 CAM 或其他相关技术消除 PVE 前后获得的参数估计的准确性。实验结果表明,CAM-CM 显著提高了动力学参数估计的准确性。我们将该算法应用于真实的 DCE-MRI 乳腺癌数据,并观察到改善的药代动力学参数估计,将肿瘤组织在像素级上分为具有不同示踪剂动力学的区域,并揭示了具有生物学意义的肿瘤组织异质性模式。该方法结合了多元聚类、凸几何分析和房室模型方法的优点。CAM-CM 的开源 MATLAB 软件可从网上获得。

相似文献

1
Tissue-specific compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors.
IEEE Trans Med Imaging. 2011 Dec;30(12):2044-58. doi: 10.1109/TMI.2011.2160276. Epub 2011 Jun 23.
2
Enhancing the convex analysis of mixtures technique for estimating DCE-MRI pharmacokinetic parameters.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6434-7. doi: 10.1109/EMBC.2014.6945101.
4
CAM-CM: a signal deconvolution tool for in vivo dynamic contrast-enhanced imaging of complex tissues.
Bioinformatics. 2011 Sep 15;27(18):2607-9. doi: 10.1093/bioinformatics/btr436. Epub 2011 Jul 23.
6
Convex Analysis of Mixtures for Separating Non-negative Well-grounded Sources.
Sci Rep. 2016 Dec 6;6:38350. doi: 10.1038/srep38350.
7
Convex-Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI.
IEEE Trans Biomed Eng. 2016 Apr;63(4):707-20. doi: 10.1109/TBME.2015.2469601. Epub 2015 Aug 18.
8
Are complex DCE-MRI models supported by clinical data?
Magn Reson Med. 2017 Mar;77(3):1329-1339. doi: 10.1002/mrm.26189. Epub 2016 Mar 4.

引用本文的文献

1
MRI Radiogenomics in Precision Oncology: New Diagnosis and Treatment Method.
Comput Intell Neurosci. 2022 Jul 7;2022:2703350. doi: 10.1155/2022/2703350. eCollection 2022.
2
Comparative assessment and novel strategy on methods for imputing proteomics data.
Sci Rep. 2022 Jan 20;12(1):1067. doi: 10.1038/s41598-022-04938-0.
3
FSCAM: CAM-Based Feature Selection for Clustering scRNA-seq.
Interdiscip Sci. 2022 Jun;14(2):394-408. doi: 10.1007/s12539-021-00495-8. Epub 2022 Jan 14.
5
debCAM: a bioconductor R package for fully unsupervised deconvolution of complex tissues.
Bioinformatics. 2020 Jun 1;36(12):3927-3929. doi: 10.1093/bioinformatics/btaa205.
8
Detection of Sources in Non-Negative Blind Source Separation by Minimum Description Length Criterion.
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4022-4037. doi: 10.1109/TNNLS.2017.2749279. Epub 2017 Oct 3.
9
Convex Analysis of Mixtures for Separating Non-negative Well-grounded Sources.
Sci Rep. 2016 Dec 6;6:38350. doi: 10.1038/srep38350.
10
Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences.
Biomed Res Int. 2016;2016:4851401. doi: 10.1155/2016/4851401. Epub 2016 Aug 18.

本文引用的文献

1
Modeling and reconstruction of mixed functional and molecular patterns.
Int J Biomed Imaging. 2006;2006:29707. doi: 10.1155/IJBI/2006/29707. Epub 2006 Jan 17.
2
The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment.
Diagn Interv Radiol. 2010 Sep;16(3):186-92. doi: 10.4261/1305-3825.DIR.2537-08.1. Epub 2009 Nov 2.
3
Estimating kinetic parameter maps from dynamic contrast-enhanced MRI using spatial prior knowledge.
IEEE Trans Med Imaging. 2009 Oct;28(10):1534-47. doi: 10.1109/TMI.2009.2019957. Epub 2009 Apr 14.
4
5
Quantification of MR brain images by mixture density and partial volume modeling.
IEEE Trans Med Imaging. 1993;12(3):566-74. doi: 10.1109/42.241885.
6
Partial volume effect compensation for improved reliability of quantitative blood-brain barrier permeability.
Magn Reson Imaging. 2007 Jun;25(5):613-25. doi: 10.1016/j.mri.2006.09.029. Epub 2006 Nov 28.
7
Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results.
Magn Reson Imaging. 2007 Jan;25(1):1-13. doi: 10.1016/j.mri.2006.09.006. Epub 2006 Nov 21.
8
Clustering by passing messages between data points.
Science. 2007 Feb 16;315(5814):972-6. doi: 10.1126/science.1136800. Epub 2007 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验