Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
Department of Biomedical Sciences, Cedars-Sinai Medical Institute, Los Angeles, CA 90048, USA.
Cell Metab. 2021 May 4;33(5):1013-1026.e6. doi: 10.1016/j.cmet.2021.02.001. Epub 2021 Feb 19.
Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.
线粒体呼吸对于细胞增殖至关重要。除了产生 ATP 外,呼吸还会生成生物合成前体,如天冬氨酸,这是核苷酸合成的必需底物。在这里,我们发现电子传递链 (ETC) 抑制不仅会耗尽细胞内的天冬氨酸,还会耗尽天冬氨酸衍生的天冬酰胺,增加 ATF4 水平,并损害 mTOR 复合物 I (mTORC1) 活性。外源性天冬酰胺可在 ETC 抑制的情况下恢复增殖、ATF4 和 mTORC1 活性以及 mTORC1 依赖性核苷酸合成,这表明天冬酰胺将活跃的呼吸传递给 ATF4 和 mTORC1。最后,我们发现 ETC 抑制剂二甲双胍(可限制肿瘤天冬酰胺合成)与天冬酰胺酶或饮食中天冬酰胺限制(可限制肿瘤天冬酰胺消耗)的联合使用,可有效抑制多种癌症小鼠模型中的肿瘤生长。由于环境天冬酰胺足以在呼吸受损的情况下恢复肿瘤生长,我们的研究结果表明,天冬酰胺合成是肿瘤线粒体呼吸的基本目的,可用于癌症患者的治疗获益。