Suppr超能文献

天冬酰胺将线粒体呼吸与 ATF4 活性和肿瘤生长偶联。

Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth.

机构信息

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.

Department of Biomedical Sciences, Cedars-Sinai Medical Institute, Los Angeles, CA 90048, USA.

出版信息

Cell Metab. 2021 May 4;33(5):1013-1026.e6. doi: 10.1016/j.cmet.2021.02.001. Epub 2021 Feb 19.

Abstract

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.

摘要

线粒体呼吸对于细胞增殖至关重要。除了产生 ATP 外,呼吸还会生成生物合成前体,如天冬氨酸,这是核苷酸合成的必需底物。在这里,我们发现电子传递链 (ETC) 抑制不仅会耗尽细胞内的天冬氨酸,还会耗尽天冬氨酸衍生的天冬酰胺,增加 ATF4 水平,并损害 mTOR 复合物 I (mTORC1) 活性。外源性天冬酰胺可在 ETC 抑制的情况下恢复增殖、ATF4 和 mTORC1 活性以及 mTORC1 依赖性核苷酸合成,这表明天冬酰胺将活跃的呼吸传递给 ATF4 和 mTORC1。最后,我们发现 ETC 抑制剂二甲双胍(可限制肿瘤天冬酰胺合成)与天冬酰胺酶或饮食中天冬酰胺限制(可限制肿瘤天冬酰胺消耗)的联合使用,可有效抑制多种癌症小鼠模型中的肿瘤生长。由于环境天冬酰胺足以在呼吸受损的情况下恢复肿瘤生长,我们的研究结果表明,天冬酰胺合成是肿瘤线粒体呼吸的基本目的,可用于癌症患者的治疗获益。

相似文献

1
Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth.
Cell Metab. 2021 May 4;33(5):1013-1026.e6. doi: 10.1016/j.cmet.2021.02.001. Epub 2021 Feb 19.
2
Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation.
Biochem Biophys Res Commun. 2013 Oct 11;440(1):76-81. doi: 10.1016/j.bbrc.2013.09.026. Epub 2013 Sep 13.
3
Asparagine Dependency Is a Targetable Metabolic Vulnerability in TP53-Altered Castration-Resistant Prostate Cancer.
Cancer Res. 2024 Sep 16;84(18):3004-3022. doi: 10.1158/0008-5472.CAN-23-2910.
4
TGF-β Promotes Metabolic Reprogramming in Lung Fibroblasts via mTORC1-dependent ATF4 Activation.
Am J Respir Cell Mol Biol. 2020 Nov;63(5):601-612. doi: 10.1165/rcmb.2020-0143OC.
5
Aspartate is an endogenous metabolic limitation for tumour growth.
Nat Cell Biol. 2018 Jul;20(7):782-788. doi: 10.1038/s41556-018-0125-0. Epub 2018 Jun 25.
6
Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival.
EMBO J. 2018 Oct 15;37(20). doi: 10.15252/embj.201899735. Epub 2018 Sep 12.
8
Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by Metformin.
BMC Cancer. 2021 Jul 12;21(1):803. doi: 10.1186/s12885-021-08346-x.
9
ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase.
Cell Metab. 2020 Apr 7;31(4):852-861.e6. doi: 10.1016/j.cmet.2020.03.008.

引用本文的文献

2
The mitochondrial aspartate transporter Ucp4a regulates muscle aging and animal lifespan in Drosophila melanogaster.
PLoS One. 2025 Aug 14;20(8):e0323980. doi: 10.1371/journal.pone.0323980. eCollection 2025.
3
Impaired mitochondrial metabolism is a critical cancer vulnerability for MYC inhibitors.
Sci Adv. 2025 Jul 18;11(29):eadw5228. doi: 10.1126/sciadv.adw5228. Epub 2025 Jul 16.
5
Dual asparagine-depriving nanoparticles against solid tumors.
Nat Commun. 2025 Jul 1;16(1):5675. doi: 10.1038/s41467-025-60798-y.
7
The Landscape of Cancer Metabolism as a Therapeutic Target.
Pathol Int. 2025 Aug;75(8):387-402. doi: 10.1111/pin.70034. Epub 2025 Jun 24.
9
Genetically encoded fluorescent reporter for polyamines.
Nat Commun. 2025 May 27;16(1):4921. doi: 10.1038/s41467-025-60147-z.
10
Group A Streptococcal asparagine metabolism regulates bacterial virulence.
EMBO Rep. 2025 Apr 14. doi: 10.1038/s44319-025-00447-z.

本文引用的文献

1
Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway.
Nature. 2020 Mar;579(7799):427-432. doi: 10.1038/s41586-020-2078-2. Epub 2020 Mar 4.
2
A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol.
Nature. 2020 Mar;579(7799):433-437. doi: 10.1038/s41586-020-2076-4. Epub 2020 Mar 4.
3
Mitochondrial stress causes neuronal dysfunction via an ATF4-dependent increase in L-2-hydroxyglutarate.
J Cell Biol. 2019 Dec 2;218(12):4007-4016. doi: 10.1083/jcb.201904148. Epub 2019 Oct 23.
4
ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2α Axis.
Mol Cell. 2019 Jun 6;74(5):877-890.e6. doi: 10.1016/j.molcel.2019.03.031. Epub 2019 Apr 22.
5
Aspartate is an endogenous metabolic limitation for tumour growth.
Nat Cell Biol. 2018 Jul;20(7):782-788. doi: 10.1038/s41556-018-0125-0. Epub 2018 Jun 25.
6
Asparagine bioavailability governs metastasis in a model of breast cancer.
Nature. 2018 Feb 15;554(7692):378-381. doi: 10.1038/nature25465. Epub 2018 Feb 7.
9
Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin.
Clin Cancer Res. 2017 Sep 15;23(18):5639-5647. doi: 10.1158/1078-0432.CCR-17-1115. Epub 2017 Jun 13.
10
Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals.
J Cell Biol. 2017 Jul 3;216(7):2027-2045. doi: 10.1083/jcb.201702058. Epub 2017 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验