Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
J Control Release. 2021 Apr 10;332:127-147. doi: 10.1016/j.jconrel.2021.02.016. Epub 2021 Feb 18.
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
近年来,聚合物胶束在癌症中递送难溶性化疗药物的临床前研究中得到了广泛应用。聚合物胶束通过两亲性聚合物的自组装以简单的方式形成。广泛存在的疏水和亲水聚合物嵌段允许研究人员探索各种聚合物组合,以实现最佳的载药量、稳定性、系统循环和递送到目标癌症组织。此外,通过增加和减少每个聚合物链中的单体数量,聚合物胶束可以很容易地进行定制。一些广泛接受的疏水聚合物有聚(乳酸)(PLA)、聚(己内酯)(PCL)、聚(乳酸-共- 己内酯)(PLGA)、聚酯、聚(氨基酸)、脂质。用于包裹疏水核的亲水聚合物有聚乙二醇(PEG)、聚恶唑啉(POx)、壳聚糖、葡聚糖和透明质酸。药物可以连接到聚合物的末端,以制备具有增强的溶解度和稳定性的药物共轭物,并为联合药物递送提供机会。它们的纳米尺寸使它们能够通过增强的渗透性和保留(EPR)效应积聚到肿瘤微环境中。此外,刺激敏感的分解为胶束提供了一种有效的方法来有效地递送治疗货物。肿瘤微环境刺激有 pH 值、缺氧和上调的酶。用于破坏胶束分解以释放有效载荷的外部应用刺激包括光、超声和温度。本文阐述了结合各种嵌段聚合物支架开发聚合物胶束的当前趋势。还讨论了开发刺激敏感的胶束以实现增强的治疗活性。