Calé Alicia, Elblová Petra, Andělová Hana, Lunova Mariia, Lunov Oleg
FZU-Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic.
Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic.
Int J Mol Sci. 2025 Jul 11;26(14):6687. doi: 10.3390/ijms26146687.
Nanodrugs hold great promise for targeted therapies, but their potential for cytotoxicity remains a major area of concern, threatening both patient safety and clinical translation. In this systematic review, we conducted a systematic investigation of nanotoxicity studies-identified through an AI-assisted screening procedure using Scopus, PubMed, and Elicit AI-to establish the molecular determinants of nanodrug-induced cytotoxicity. Our findings reveal three dominant and linked mechanisms that consistently act in a range of nanomaterials: oxidative stress, inflammatory signaling, and lysosomal disruption. Key nanomaterial properties like chemical structure, size, shape, surface charge, tendency to aggregate, and biocorona formation control these pathways, modulating cellular uptake, reactive oxygen species generation, cytokine release, and subcellular injury. Notably, the most frequent mechanism was oxidative stress, which often initiated downstream inflammatory and apoptotic signaling. By linking these toxicity pathways with particular nanoparticle characteristics, our review presents necessary guidelines for safer, more biocompatible nanodrug formulation design. This extensive framework acknowledges the imperative necessity for mechanistic toxicity assessment in nanopharmaceutical design and underscores the strength of AI tools in driving systematic toxicology studies.
纳米药物在靶向治疗方面具有巨大潜力,但其细胞毒性潜力仍是一个主要关注领域,对患者安全和临床转化都构成威胁。在本系统评价中,我们对通过使用Scopus、PubMed和Elicit AI的人工智能辅助筛选程序确定的纳米毒性研究进行了系统调查,以确定纳米药物诱导细胞毒性的分子决定因素。我们的研究结果揭示了三种主要且相互关联的机制,这些机制在一系列纳米材料中持续发挥作用:氧化应激、炎症信号传导和溶酶体破坏。化学结构、尺寸、形状、表面电荷、聚集倾向和生物冠形成等关键纳米材料特性控制着这些途径,调节细胞摄取、活性氧生成、细胞因子释放和亚细胞损伤。值得注意的是,最常见的机制是氧化应激,它通常引发下游炎症和凋亡信号传导。通过将这些毒性途径与特定的纳米颗粒特性联系起来,我们的综述为更安全、生物相容性更好的纳米药物制剂设计提供了必要的指导方针。这个广泛的框架认识到纳米药物设计中进行机制毒性评估的迫切必要性,并强调了人工智能工具在推动系统毒理学研究方面的优势。
Int J Mol Sci. 2025-7-11
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
Cochrane Database Syst Rev. 2014-4-29
Cochrane Database Syst Rev. 2022-10-4
J Am Heart Assoc. 2025-5-20
JACS Au. 2025-3-26
Int J Nanomedicine. 2025-3-19
Dalton Trans. 2025-4-15