Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
Nat Rev Microbiol. 2018 Apr;16(4):187-201. doi: 10.1038/nrmicro.2017.153. Epub 2018 Jan 22.
Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.
大多数(如果不是全部)细菌和古菌细胞都至少含有一种蛋白丝系统。尽管这些丝系统在某些情况下形成的结构与真核细胞骨架非常相似,但“原核细胞骨架”一词被用来指代许多不同种类的蛋白丝。细胞骨架通过蛋白单体的聚合和由此产生的能够达到比单体尺寸更大的长度尺度的能力来实现其功能。原核细胞骨架参与了原核细胞生物学的许多基本方面,在细胞形状决定、细胞分裂和非染色体 DNA 分离等方面发挥着重要作用。一些形成丝状的蛋白已被分类为少数几个保守的蛋白家族,例如几乎普遍存在的微管蛋白和肌动蛋白超家族。为了了解丝状结构的特殊性以及它们所形成的细胞骨架如何使细胞能够执行基本功能,已经在不同的细菌和古菌中研究了细胞骨架分子及其丝的结构和功能。在这篇综述中,我们将这些数据汇集在一起,强调了线性蛋白聚合物可以用来组织细菌和古菌中其他分子和结构的多种方式。