Suppr超能文献

人口网络中流行病的数据驱动预测与源头识别。

Data-driven prediction and origin identification of epidemics in population networks.

作者信息

Larson Karen, Arampatzis Georgios, Bowman Clark, Chen Zhizhong, Hadjidoukas Panagiotis, Papadimitriou Costas, Koumoutsakos Petros, Matzavinos Anastasios

机构信息

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.

Computational Science and Engineering Laboratory, ETH Zürich, CH-8092, Switzerland.

出版信息

R Soc Open Sci. 2021 Jan 20;8(1):200531. doi: 10.1098/rsos.200531. eCollection 2021 Jan.

Abstract

Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communities from limited, noisy observations; the state-of-the-art computational framework compensates for the model complexity by exploiting massively parallel computing architectures. Using noisy, synthetic data, we show the potential of the approach to perform robust model fitting and additionally demonstrate that we can effectively identify the disease origin via Bayesian model selection. As disease-related data are increasingly available, the proposed framework has broad practical relevance for the prediction and management of epidemics.

摘要

有效的流行病干预策略依赖于对其起源的识别以及网络疾病模型预测的稳健性。我们引入了一个贝叶斯不确定性量化框架,用于从有限的、有噪声的观测数据中推断在社区网络上传播的疾病的模型参数;最新的计算框架通过利用大规模并行计算架构来补偿模型的复杂性。使用有噪声的合成数据,我们展示了该方法进行稳健模型拟合的潜力,并进一步证明我们可以通过贝叶斯模型选择有效地识别疾病起源。随着与疾病相关的数据越来越容易获得,所提出的框架在流行病的预测和管理方面具有广泛的实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d1/7890494/4b35fbdcbcdc/rsos200531-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验