Larson Karen, Arampatzis Georgios, Bowman Clark, Chen Zhizhong, Hadjidoukas Panagiotis, Papadimitriou Costas, Koumoutsakos Petros, Matzavinos Anastasios
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
Computational Science and Engineering Laboratory, ETH Zürich, CH-8092, Switzerland.
R Soc Open Sci. 2021 Jan 20;8(1):200531. doi: 10.1098/rsos.200531. eCollection 2021 Jan.
Effective intervention strategies for epidemics rely on the identification of their origin and on the robustness of the predictions made by network disease models. We introduce a Bayesian uncertainty quantification framework to infer model parameters for a disease spreading on a network of communities from limited, noisy observations; the state-of-the-art computational framework compensates for the model complexity by exploiting massively parallel computing architectures. Using noisy, synthetic data, we show the potential of the approach to perform robust model fitting and additionally demonstrate that we can effectively identify the disease origin via Bayesian model selection. As disease-related data are increasingly available, the proposed framework has broad practical relevance for the prediction and management of epidemics.
有效的流行病干预策略依赖于对其起源的识别以及网络疾病模型预测的稳健性。我们引入了一个贝叶斯不确定性量化框架,用于从有限的、有噪声的观测数据中推断在社区网络上传播的疾病的模型参数;最新的计算框架通过利用大规模并行计算架构来补偿模型的复杂性。使用有噪声的合成数据,我们展示了该方法进行稳健模型拟合的潜力,并进一步证明我们可以通过贝叶斯模型选择有效地识别疾病起源。随着与疾病相关的数据越来越容易获得,所提出的框架在流行病的预测和管理方面具有广泛的实际意义。