Suppr超能文献

SIR 过程收敛到平均场模型的基本证明。

Elementary proof of convergence to the mean-field model for the SIR process.

作者信息

Armbruster Benjamin, Beck Ekkehard

机构信息

Department of Industrial Engineering and Management Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

出版信息

J Math Biol. 2017 Aug;75(2):327-339. doi: 10.1007/s00285-016-1086-1. Epub 2016 Dec 21.

Abstract

The susceptible-infected-recovered (SIR) model has been used extensively to model disease spread and other processes. Despite the widespread usage of this ordinary differential equation (ODE) based model which represents the mean-field approximation of the underlying stochastic SIR process on contact networks, only few rigorous approaches exist and these use complex semigroup and martingale techniques to prove that the expected fraction of the susceptible and infected nodes of the stochastic SIR process on a complete graph converges as the number of nodes increases to the solution of the mean-field ODE model. Extending the elementary proof of convergence for the SIS process introduced by Armbruster and Beck (IMA J Appl Math, doi: 10.1093/imamat/hxw010 , 2016) to the SIR process, we show convergence using only a system of three ODEs, simple probabilistic inequalities, and basic ODE theory. Our approach can also be generalized to many other types of compartmental models (e.g., susceptible-infected-recovered-susceptible (SIRS)) which are linear ODEs with the addition of quadratic terms for the number of new infections similar to the SI term in the SIR model.

摘要

易感-感染-康复(SIR)模型已被广泛用于对疾病传播及其他过程进行建模。尽管这种基于常微分方程(ODE)的模型被广泛使用,它代表了接触网络上潜在随机SIR过程的平均场近似,但只有少数严格的方法,且这些方法使用复杂的半群和鞅技术来证明,在完全图上随机SIR过程中易感节点和感染节点的预期比例,随着节点数量的增加收敛到平均场ODE模型的解。将Armbruster和Beck(《IMA应用数学杂志》,doi: 10.1093/imamat/hxw010,2016)引入的SIS过程收敛的基本证明扩展到SIR过程,我们仅使用一个由三个ODE组成的系统、简单的概率不等式和基本的ODE理论来证明收敛性。我们的方法还可以推广到许多其他类型的 compartmental 模型(例如,易感-感染-康复-易感(SIRS)),这些模型是线性ODE,类似于SIR模型中的SI项,新感染数量增加了二次项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验