Suppr超能文献

探究精英运动员的患者报告结果测量信息系统(PROMIS)身体功能和疼痛干扰领域

Investigating the PROMIS Physical Function and Pain Interference Domains in Elite Athletes.

作者信息

Franovic Sreten, Schlosser Collin, Guo Eric, Hessburg Luke, Kuhlmann Noah A, Okoroha Kelechi R, Makhni Eric C

机构信息

Henry Ford Hospital, Detroit, Michigan, USA.

出版信息

Orthop J Sports Med. 2021 Jan 29;9(1):2325967120970195. doi: 10.1177/2325967120970195. eCollection 2021 Jan.

Abstract

BACKGROUND

Multiple studies have demonstrated the National Institutes of Health (NIH) Patient-Reported Outcomes Measurement Information System (PROMIS) to be a responsive and efficient measure for patients undergoing orthopaedic surgery. While these studies were rigorous in their protocol and methodology, no efforts in recent literature have been made to identify if these reference scores apply to elite athletes.

PURPOSE/HYPOTHESIS: The purpose of this study was to determine whether there is a difference in the baseline scores of elite athletes versus the general population. We hypothesized that athletes' PROMIS upper extremity general function (PROMIS-UE) and general physical function (PROMIS-PF) scores would vary substantially from the mean health state of the general population. We further hypothesized that these scores would be affected by specific sport and level of competition.

STUDY DESIGN

Cross-sectional study; Level of evidence, 3.

METHODS

Three PROMIS computer adaptive test (CAT) domains were administered to elite athlete (≥18 years) volunteers (either in person or through email). An elite athlete was defined as one participating in sports at the collegiate level or higher. Test domains included PROMIS-PF, PROMIS-UE, and pain interference (PROMIS-PI). PROMIS domain scores were defined and assessed against NIH reference values to identify significant differences. Distribution analysis was conducted using histograms and normality assessments. Domains were also subject to correlation analysis. Finally, subgroup analysis was conducted for all athlete characteristics to identify any factors associated with variance.

RESULTS

In total, 196 elite athletes (mean age, 21.1 years; range, 18.0-36.7 years) completed all 3 PROMIS-CAT forms. Overall, the mean scores were 56.0 ± 6.4, 58.1 ± 7.7, and 47.1 ± 7.3 for PROMIS-UE, PROMIS-PF, and PROMIS-PI, respectively. Distribution analysis showed nonnormal distribution for all 3 PROMIS domains (Kolmogorov-Smirnov test, < .001). Similarly, in all 3 PROMIS domains the athletes displayed more disparate scores than the NIH-reported reference values (1-way sign test, < .001). Only the presence of pain and sport played showed association with variance in PROMIS domain scores ( < .001 and = .003, respectively).

CONCLUSION

Elite athletes displayed more disparate reference scores than the NIH-reported average of 50 for PROMIS-UE, PROMIS-PF, and PROMIS-PI. Furthermore, these forms were sensitive to varying levels of sport among collegiate athletes.

摘要

背景

多项研究表明,美国国立卫生研究院(NIH)的患者报告结局测量信息系统(PROMIS)是一种适用于接受骨科手术患者的有效且高效的测量工具。虽然这些研究在方案和方法上很严谨,但近期文献中尚未有人致力于确定这些参考分数是否适用于精英运动员。

目的/假设:本研究的目的是确定精英运动员与普通人群的基线分数是否存在差异。我们假设运动员的PROMIS上肢总体功能(PROMIS-UE)和总体身体功能(PROMIS-PF)分数将与普通人群的平均健康状态有很大差异。我们进一步假设这些分数会受到特定运动项目和比赛水平的影响。

研究设计

横断面研究;证据等级,3级。

方法

对精英运动员(≥18岁)志愿者(亲自或通过电子邮件)进行了3个PROMIS计算机自适应测试(CAT)领域的测试。精英运动员被定义为参加大学及以上水平运动的人。测试领域包括PROMIS-PF、PROMIS-UE和疼痛干扰(PROMIS-PI)。根据NIH参考值定义并评估PROMIS领域分数,以确定显著差异。使用直方图和正态性评估进行分布分析。各领域也进行了相关性分析。最后,对所有运动员特征进行亚组分析,以确定与差异相关的任何因素。

结果

共有196名精英运动员(平均年龄21.1岁;范围18.0 - 36.7岁)完成了所有3种PROMIS-CAT表格形式测试。总体而言,PROMIS-UE、PROMIS-PF和PROMIS-PI的平均分数分别为56.0±6.4、58.1±7.7和47.1±7.3。分布分析显示,所有3个PROMIS领域均呈非正态分布(柯尔莫哥洛夫-斯米尔诺夫检验,P<0.001)。同样,在所有3个PROMIS领域中,运动员的分数比NIH报告的参考值差异更大(单样本符号检验,P<0.001)。只有疼痛的存在和运动项目与PROMIS领域分数的差异相关(分别为P<0.001和P = 0.003)。

结论

与NIH报告的PROMIS-UE、PROMIS-PF和PROMIS-PI平均分数50相比,精英运动员的参考分数差异更大。此外,这些表格形式对大学运动员不同水平的运动项目敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b810/7869165/9a2f2ddc9f0d/10.1177_2325967120970195-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验