Suppr超能文献

两个包含电弧参数和输入参数的气体保护金属极电弧焊工艺数据集。

Two gas metal arc welding process dataset of arc parameters and input parameters.

作者信息

Thompson Martinez Rogfel, Alvarez Bestard Guillermo, Absi Alfaro Sadek C

机构信息

Postgraduate Program in Mechatronic System (PPMEC), Student grant CAPES, University of Brasilia, Brazil.

Electronics Engineering, Campus Gama, University of Brasilia, Brazil.

出版信息

Data Brief. 2021 Jan 29;35:106790. doi: 10.1016/j.dib.2021.106790. eCollection 2021 Apr.

Abstract

The dataset was collected from experiments using the gas metal arc welding (GMAW) process. The experiments were planned with Central Composite Design to obtain a greater variety of data. This variability helps to develop a predictive model more generalistic with machine learning techniques. It was collected welding arc images and weld bead geometry images. Welding arc images were processed with a deep learning technique to detect drop detachment and short circuit transfer mode. These detections were useful to calc drop detachment frequency, short circuit frequency, and molten volume in every moment of GMAW process time. It was obtained the weld bead geometry parameters by process time too. All these data, joining input parameters were correlated, resulting in the datasets shown in this article.

摘要

该数据集是从使用气体金属电弧焊(GMAW)工艺的实验中收集的。实验采用中心复合设计进行规划,以获取更多种类的数据。这种变异性有助于利用机器学习技术开发更具通用性的预测模型。收集了焊接电弧图像和焊缝几何形状图像。利用深度学习技术对焊接电弧图像进行处理,以检测熔滴脱离和短路过渡模式。这些检测对于计算GMAW工艺时间每个时刻的熔滴脱离频率、短路频率和熔化体积很有用。通过工艺时间也获得了焊缝几何形状参数。所有这些数据与输入参数相关联,从而得到了本文所示的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b091/7881253/a564e52248ab/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验