Institute of Biomedical Engineering and Health Sciences, School of Pharmacy & School of Medicine, Changzhou University, Changzhou, China.
Department of Bioengineering, California Institute of Technology, Pasadena, USA.
Cell Prolif. 2021 Apr;54(4):e13014. doi: 10.1111/cpr.13014. Epub 2021 Feb 21.
In vivo, cells are surrounded by extracellular matrix (ECM). To build organs from single cells, it is generally believed that ECM serves as scaffolds to coordinate cell positioning and differentiation. Nevertheless, how cells utilize cell-ECM interactions for the spatiotemporal coordination to different ECM at the tissue scale is not fully understood.
Here, using in vitro assay with engineered MDCK cells expressing H2B-mCherry (nucleus) and gp135/Podocalyxin-GFP (apical marker), we show in multi-dimensions that such coordination for epithelial morphogenesis can be determined by cell-soluble ECM interaction in the fluidic phase.
The coordination depends on the native topology of ECM components such as sheet-like basement membrane (BM) and type I collagen (COL) fibres: scaffold formed by BM (COL) facilitates a close-ended (open-ended) coordination that leads to the formation of lobular (tubular) epithelium. Further, cells form apicobasal polarity throughout the entire lobule/tubule without a complete coverage of ECM at the basal side, and time-lapse two-photon scanning imaging reveals the polarization occurring early and maintained through the lobular expansion. During polarization, gp135-GFP was converged to the apical surface collectively in the lobular/tubular structures, suggesting possible intercellular communications. Under suspension culture, the polarization was impaired with multi-lumen formation in the tubules, implying the importance of ECM biomechanical microenvironment.
Our results suggest a biophysical mechanism for cells to form polarity and coordinate positioning at tissue scale, and in engineering epithelium through cell-soluble ECM interaction and self-assembly.
在体内,细胞被细胞外基质 (ECM) 包围。为了从单个细胞构建器官,人们普遍认为 ECM 充当支架以协调细胞定位和分化。然而,细胞如何利用细胞-ECM 相互作用在组织尺度上实现不同 ECM 的时空协调还不完全清楚。
在这里,我们使用体外实验,用表达 H2B-mCherry(核)和 gp135/Podocalyxin-GFP(顶标记)的工程化 MDCK 细胞进行实验,我们在多维空间中表明,上皮形态发生的这种协调可以通过流体相中细胞可溶 ECM 相互作用来确定。
这种协调取决于 ECM 成分的固有拓扑结构,如片状基底膜 (BM) 和 I 型胶原 (COL) 纤维:由 BM (COL) 形成的支架促进封闭(开放)协调,导致形成小叶(管状)上皮。此外,细胞在整个小叶/管中形成顶底极性,而基底侧没有完全覆盖 ECM,延时双光子扫描成像显示极性发生得很早,并通过小叶扩展维持。在极化过程中,gp135-GFP 集体聚集在小叶/管状结构的顶端表面,表明可能存在细胞间通讯。在悬浮培养下,由于管腔中形成多腔,极化受损,这暗示了 ECM 生物力学微环境的重要性。
我们的结果表明,细胞在组织尺度上形成极性和协调定位的一种生物物理机制,通过细胞可溶 ECM 相互作用和自组装来构建上皮组织。