Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
Hubrecht Institute for Developmental and Stem Cell Biology, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
Cardiovasc Res. 2022 Jan 7;118(1):226-240. doi: 10.1093/cvr/cvab004.
Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development.
Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning. Analysis using an ECM sensor revealed the cardiac ECM is further regionalized along the atrioventricular axis. Spatial transcriptomic analysis of gene expression in the heart tube identified candidate genes that may drive ECM expansion. This approach identified regionalized expression of hapln1a, encoding an ECM cross-linking protein. Validation of transcriptomic data by in situ hybridization confirmed regionalized hapln1a expression in the heart, with highest levels of expression in the future atrium and on the left side of the tube, overlapping with the observed ECM expansion. Analysis of CRISPR-Cas9-generated hapln1a mutants revealed a reduction in atrial size and reduced chamber ballooning. Loss-of-function analysis demonstrated that ECM expansion is dependent upon Hapln1a, together supporting a role for Hapln1a in regionalized ECM modulation and cardiac morphogenesis. Analysis of hapln1a expression in zebrafish mutants with randomized or absent embryonic left-right asymmetry revealed that laterality cues position hapln1a-expressing cells asymmetrically in the left side of the heart tube.
We identify a regionalized ECM expansion in the heart tube which promotes correct heart development, and propose a novel model whereby embryonic laterality cues orient the axis of ECM asymmetry in the heart, suggesting these two pathways interact to promote robust cardiac morphogenesis.
脊椎动物心脏的发育需要线性管的复杂形态发生,以形成成熟的器官,这一过程对于心脏的正常形态和功能至关重要,需要协调胚胎的左右不对称性、心脏的生长和区域化的细胞变化。虽然以前的研究已经证明细胞外基质(ECM)成分在心脏形态发生中具有广泛的要求,但我们假设 ECM 的区域化可能会在心脏发育过程中微调心脏的形状。
我们使用斑马鱼胚胎的活体体内光片成像,描述了心脏环化和心室气球样扩张之前,心肌和心内膜之间 ECM 的左侧扩张。使用 ECM 传感器的分析显示,心脏 ECM 沿房室轴进一步区域化。心脏管腔基因表达的空间转录组分析确定了可能驱动 ECM 扩张的候选基因。这种方法鉴定了 hapln1a 的区域化表达,该基因编码一种 ECM 交联蛋白。通过原位杂交对转录组数据的验证证实了心脏中 hapln1a 的区域化表达,其在未来的心房和管腔的左侧表达水平最高,与观察到的 ECM 扩张重叠。CRISPR-Cas9 生成的 hapln1a 突变体分析显示心房大小减小和心室气球样扩张减少。功能丧失分析表明 ECM 扩张依赖于 Hapln1a,共同支持 Hapln1a 在区域化 ECM 调节和心脏形态发生中的作用。在随机或不存在胚胎左右不对称性的斑马鱼突变体中分析 hapln1a 的表达表明,左右不对称性线索将 hapln1a 表达细胞不对称地定位在心脏管腔的左侧。
我们在心脏管腔中发现了一个区域化的 ECM 扩张,它促进了正确的心脏发育,并提出了一个新的模型,即胚胎左右不对称性线索使 ECM 不对称的轴在心脏中定向,表明这两个途径相互作用以促进强大的心脏形态发生。