Suppr超能文献

基于 CEA 和 48 多重血清生物标志物panel 的结直肠癌预后模型。

A prognostic model for colorectal cancer based on CEA and a 48-multiplex serum biomarker panel.

机构信息

Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Meilahti Hospital, Haartmaninkatu 4, PO Box 340, 00029 HUS, Helsinki, Finland.

MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland.

出版信息

Sci Rep. 2021 Feb 22;11(1):4287. doi: 10.1038/s41598-020-80785-1.

Abstract

Mortality in colorectal cancer (CRC) remains high, resulting in 860,000 deaths annually. Carcinoembryonic antigen is widely used in clinics for CRC patient follow-up, despite carrying a limited prognostic value. Thus, an obvious need exists for multivariate prognostic models. We analyzed 48 biomarkers using a multiplex immunoassay panel in preoperative serum samples from 328 CRC patients who underwent surgery at Helsinki University Hospital between 1998 and 2003. We performed a multivariate prognostic forward-stepping background model based on basic clinicopathological data, and a multivariate machine-learned prognostic model based on clinicopathological data and biomarker variables, calculating the disease-free survival using the value of importance score. From the 48 analyzed biomarkers, only IL-8 emerged as a significant prognostic factor for CRC patients in univariate analysis (HR 4.88; 95% CI 2.00-11.92; p = 0.024) after correcting for multiple comparisons. We also developed a multivariate model based on all 48 biomarkers using a random survival forest analysis. Variable selection based on a minimal depth and the value of importance yielded two tentative candidate CRC prognostic markers: IL-2Ra and IL-8. A multivariate prognostic model using machine-learning technologies improves the prognostic assessment of survival among surgically treated CRC patients.

摘要

结直肠癌(CRC)的死亡率仍然很高,每年导致 86 万人死亡。癌胚抗原广泛用于 CRC 患者的临床随访,尽管其预后价值有限。因此,明显需要多变量预后模型。我们使用多重免疫分析试剂盒分析了 328 名在 1998 年至 2003 年期间在赫尔辛基大学医院接受手术的 CRC 患者的术前血清样本中的 48 种生物标志物。我们根据基本临床病理数据进行了多变量预后前向逐步背景模型分析,根据临床病理数据和生物标志物变量进行了多变量机器学习预后模型分析,使用重要性评分计算无病生存率。在分析的 48 种生物标志物中,只有白细胞介素-8(IL-8)在单变量分析中是 CRC 患者的显著预后因素(HR 4.88;95%CI 2.00-11.92;p=0.024),在经过多次比较校正后。我们还使用随机生存森林分析基于所有 48 种生物标志物开发了一个多变量模型。基于最小深度和重要性值的变量选择得出了两个潜在的 CRC 预后候选标志物:白细胞介素-2 受体α(IL-2Ra)和白细胞介素-8(IL-8)。使用机器学习技术的多变量预后模型可提高对接受手术治疗的 CRC 患者的生存预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66f8/7900104/a5927ca7ec1b/41598_2020_80785_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验