Tieskens Koen, Patil Prasad, Levy Jonathan I, Brochu Paige, Lane Kevin J, Fabian M Patricia, Carnes Fei, Haley Beth M, Spangler Keith R, Leibler Jessica H
Boston University School of Public Health.
Res Sq. 2021 Feb 17:rs.3.rs-237622. doi: 10.21203/rs.3.rs-237622/v1.
Associations between community-level risk factors and COVID-19 incidence are used to identify vulnerable subpopulations and target interventions, but the variability of these associations over time remains largely unknown. We evaluated variability in the associations between community-level predictors and COVID-19 case incidence in 351 cities and towns in Massachusetts from March to October 2020.
Using publicly available sociodemographic, occupational, environmental, and mobility datasets, we developed mixed-effect, adjusted Poisson regression models to depict associations between these variables and town-level COVID-19 case incidence data across five distinct time periods. We examined town-level demographic variables, including z-scores of percent Black, Latinx, over 80 years and undergraduate students, as well as factors related to occupation, housing density, economic vulnerability, air pollution (PM ), and institutional facilities.
Associations between key predictor variables and town-level incidence varied across the five time periods. We observed reductions over time in the association with percentage Black residents (IRR=1.12 CI=(1.12-1.13) in spring, IRR=1.01 CI=(1.00-1.01) in fall). The association with number of long-term care facility beds per capita also decreased over time (IRR=1.28 CI=(1.26-1.31) in spring, IRR=1.07 CI=(1.05-1.09)in fall). Controlling for other factors, towns with higher percentages of essential workers experienced elevated incidence of COVID-19 throughout the pandemic (e.g., IRR=1.30 CI=(1.27-1.33) in spring, IRR=1.20, CI=(1.17-1.22) in fall). Towns with higher percentages of Latinx residents also had sustained elevated incidence over time (e.g., IRR=1.19 CI=(1.18-1.21) in spring, IRR=1.14 CI=(1.13-1.15) in fall).
Town-level COVID-19 risk factors vary with time. In Massachusetts, racial (but not ethnic) disparities in COVID-19 incidence have decreased over time, perhaps indicating greater success in risk mitigation in selected communities. Our approach can be used to evaluate effectiveness of public health interventions and target specific mitigation efforts on the community level.
社区层面的风险因素与新冠病毒疾病(COVID-19)发病率之间的关联被用于识别脆弱亚人群并确定干预目标,但这些关联随时间的变化情况仍 largely 未知。我们评估了 2020 年 3 月至 10 月期间马萨诸塞州 351 个城镇中社区层面预测因素与 COVID-19 病例发病率之间关联的变异性。
利用公开可得的社会人口统计学、职业、环境和流动性数据集,我们建立了混合效应调整泊松回归模型,以描述这些变量与五个不同时间段内城镇层面 COVID-19 病例发病率数据之间的关联。我们研究了城镇层面的人口统计学变量,包括黑人、拉丁裔、80 岁以上人群和本科生百分比的 z 分数,以及与职业、住房密度、经济脆弱性、空气污染(细颗粒物)和机构设施相关的因素。
关键预测变量与城镇层面发病率之间的关联在五个时间段内各不相同。我们观察到与黑人居民百分比的关联随时间下降(春季发病率比(IRR)=1.12,置信区间(CI)=(1.12 - 1.13),秋季 IRR = 1.01,CI=(1.00 - 1.01))。与人均长期护理机构床位数量的关联也随时间下降(春季 IRR = 1.28,CI=(1.26 - 1.31),秋季 IRR = 1.07,CI=(1.05 - 1.09))。在控制其他因素的情况下,在整个疫情期间, essential workers 比例较高的城镇 COVID-19 发病率升高(例如,春季 IRR = 1.30,CI=(1.27 - 1.33),秋季 IRR = 1.20,CI=(1.17 - 1.22))。拉丁裔居民比例较高的城镇发病率也随时间持续升高(例如,春季 IRR = 1.19,CI=(1.18 - 1.21),秋季 IRR = 1.14,CI=(1.13 - 1.15))。
城镇层面的 COVID-19 风险因素随时间变化。在马萨诸塞州,COVID-19 发病率的种族(而非族裔)差异随时间减少,这可能表明在特定社区降低风险方面取得了更大成功。我们的方法可用于评估公共卫生干预措施的有效性,并在社区层面针对特定的降低风险努力。