Suppr超能文献

马萨诸塞州社区对 COVID-19 病例和死亡的预测因素:使用精细化地理空间数据评估随时间的变化。

Community predictors of COVID-19 cases and deaths in Massachusetts: Evaluating changes over time using geospatially refined data.

机构信息

Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA.

Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.

出版信息

Influenza Other Respir Viruses. 2022 Mar;16(2):213-221. doi: 10.1111/irv.12926. Epub 2021 Nov 10.

Abstract

BACKGROUND

The COVID-19 pandemic has highlighted the need for targeted local interventions given substantial heterogeneity within cities and counties. Publicly available case data are typically aggregated to the city or county level to protect patient privacy, but more granular data are necessary to identify and act upon community-level risk factors that can change over time.

METHODS

Individual COVID-19 case and mortality data from Massachusetts were geocoded to residential addresses and aggregated into two time periods: "Phase 1" (March-June 2020) and "Phase 2" (September 2020 to February 2021). Institutional cases associated with long-term care facilities, prisons, or homeless shelters were identified using address data and modeled separately. Census tract sociodemographic and occupational predictors were drawn from the 2015-2019 American Community Survey. We used mixed-effects negative binomial regression to estimate incidence rate ratios (IRRs), accounting for town-level spatial autocorrelation.

RESULTS

Case incidence was elevated in census tracts with higher proportions of Black and Latinx residents, with larger associations in Phase 1 than Phase 2. Case incidence associated with proportion of essential workers was similarly elevated in both Phases. Mortality IRRs had differing patterns from case IRRs, decreasing less substantially between Phases for Black and Latinx populations and increasing between Phases for proportion of essential workers. Mortality models excluding institutional cases yielded stronger associations for age, race/ethnicity, and essential worker status.

CONCLUSIONS

Geocoded home address data can allow for nuanced analyses of community disease patterns, identification of high-risk subgroups, and exclusion of institutional cases to comprehensively reflect community risk.

摘要

背景

新冠疫情凸显了在城市和郡县内部存在显著异质性的情况下,需要有针对性的地方干预措施。由于保护患者隐私,通常将公开的病例数据汇总到城市或郡县一级,但需要更详细的数据来识别和应对可能随时间变化的社区层面的风险因素。

方法

将马萨诸塞州的个体新冠病例和死亡数据进行地理编码,按居住地址进行汇总,分为两个时间段:“第一阶段”(2020 年 3 月至 6 月)和“第二阶段”(2020 年 9 月至 2021 年 2 月)。使用地址数据识别与长期护理设施、监狱或无家可归者收容所相关的机构病例,并分别进行建模。从 2015-2019 年美国社区调查中提取普查区社会人口和职业预测因素。我们使用混合效应负二项回归估计发病率比(IRR),并考虑了镇一级的空间自相关。

结果

黑人和拉丁裔居民比例较高的普查区的病例发生率较高,在第一阶段的相关性大于第二阶段。在两个阶段中,与基本工人比例相关的病例发生率也同样升高。死亡率 IRR 的模式与病例 IRR 不同,黑人和拉丁裔人群在两个阶段之间的下降幅度较小,而基本工人比例在两个阶段之间的上升幅度较大。排除机构病例的死亡率模型对年龄、种族/族裔和基本工人状况的相关性更强。

结论

家庭住址的地理编码数据可以允许对社区疾病模式进行细致分析,识别高风险亚组,并排除机构病例,以全面反映社区风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7859/8818818/508372c953df/IRV-16-213-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验