Suppr超能文献

利用密度泛函理论计算揭示了甲烷在Cu-ZSM-5上部分氧化为甲醇的催化循环。

Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations.

作者信息

Yu Xi, Zhong Liangshu, Li Shenggang

机构信息

CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.

出版信息

Phys Chem Chem Phys. 2021 Mar 4;23(8):4963-4974. doi: 10.1039/d0cp06696f.

Abstract

Density functional theory (DFT) calculations were performed to investigate the catalytic cycle of methane conversion to methanol over both [Cu2(O2)]2+ and [Cu2(μ-O)]2+ active sites in the Cu-ZSM-5 catalyst. The [Cu2(O2)]2+ site is found to be active for the partial oxidation of methane to methanol, and although it has a higher energy barrier in the methane activation step, it involves a very low energy barrier in the methanol formation step (36.3 kJ mol-1) as well as a lower methanol desorption energy (52.5 kJ mol-1). As the [Cu2(O2)]2+ active site is also thermodynamically stable, it may play an important role during methane conversion to methanol. Furthermore, the methane activation step follows the homolytic route and the heterolytic route for the [Cu2(O2)]2+ and [Cu2(μ-O)]2+ active sites, respectively, whereas the methanol formation step follows the direct radical rebound mechanism and the indirect rebound mechanism, respectively. Our calculations further indicate that the electronic properties of the reactive O atoms in the active site influence their reactivity toward methane oxidation. More specifically, the higher the spin density and the more negative the charge of the reactive O atom at the active site are, the lower the energy barrier for methane activation will be; and the more negative the charge of the hydroxyl group in the reaction intermediate during the partial oxidation of methane to methanol is, the higher energy barrier of the methanol formation step will be in the triplet state. Furthermore, we used a larger cluster model to predict the mechanism of the methane activation step and the effect of atomic charge of the O atom at the [Cu2(μ-O)]2+ and [Cu2(O2)]2+ active sites on the energy barriers of partial oxidation of methane to methanol, and the conclusions drawn employing the larger cluster model are consistent with those drawn using the smaller double-5T-ring cluster model. In addition, different from the traditional mechanism for methane activation at [Cu2(O2)]2+, which consists of two transition states, we find that the partial oxidation of methane at [Cu2(O2)]2+ can also occur via a single step by direct insertion of one of the O atoms at the active site into the C-H bond of methane.

摘要

进行了密度泛函理论(DFT)计算,以研究在Cu-ZSM-5催化剂中[Cu2(O2)]2+和[Cu2(μ-O)]2+活性位点上甲烷转化为甲醇的催化循环。发现[Cu2(O2)]2+位点对甲烷部分氧化为甲醇具有活性,尽管它在甲烷活化步骤中具有较高的能垒,但在甲醇形成步骤中涉及非常低的能垒(36.3 kJ mol-1)以及较低的甲醇脱附能(52.5 kJ mol-1)。由于[Cu2(O2)]2+活性位点在热力学上也很稳定,它可能在甲烷转化为甲醇的过程中发挥重要作用。此外,甲烷活化步骤分别遵循[Cu2(O2)]2+和[Cu2(μ-O)]2+活性位点的均裂途径和异裂途径,而甲醇形成步骤分别遵循直接自由基反弹机制和间接反弹机制。我们的计算进一步表明,活性位点中反应性O原子的电子性质影响它们对甲烷氧化的反应性。更具体地说,活性位点上反应性O原子的自旋密度越高且电荷越负,甲烷活化的能垒就越低;在甲烷部分氧化为甲醇的过程中,反应中间体中羟基的电荷越负,三重态下甲醇形成步骤的能垒就越高。此外,我们使用了更大的簇模型来预测甲烷活化步骤的机制以及[Cu2(μ-O)]2+和[Cu2(O2)]2+活性位点上O原子的原子电荷对甲烷部分氧化为甲醇的能垒影响,并且使用更大簇模型得出的结论与使用较小的双5T环簇模型得出的结论一致。此外,与传统的[Cu2(O2)]2+上甲烷活化机制(由两个过渡态组成)不同,我们发现[Cu2(O2)]2+上甲烷的部分氧化也可以通过活性位点上的一个O原子直接插入甲烷的C-H键以单步方式发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验