Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, MTFS, Olav Kyrres Gate 9, NTNU Norwegian University of Science and Technology, 7489, Trondheim, Norway; KG.Jebsen Centre for Alzheimer's Disease, NTNU, 7489, Trondheim, Norway.
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway.
Ageing Res Rev. 2021 May;67:101307. doi: 10.1016/j.arr.2021.101307. Epub 2021 Feb 20.
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
内侧颞叶-海马系统包含特定的网络,用于支持陈述性记忆。该系统对衰老和病理过程的变化具有选择性易感性。内嗅皮层(entorhinal cortex,EC)是该记忆系统的关键组成部分,因为它充当了新皮层和海马体之间的接口。EC 受到阿尔茨海默病(Alzheimer's disease,AD)蛋白病的严重影响。这些变化以典型的时空模式出现,包括细胞内淀粉样β(amyloid-beta,Aβ)水平升高、Aβ斑块实质沉积以及含有异常处理 Tau 的神经纤维缠结(neurofibrillary tangles,NFTs)。在属于 EC 层 II(EC LII)的神经元群体中,很早就观察到 iAβ水平升高和 NFT 形成,最近的证据使我们相信,这个群体由高能量需求的 reelin 阳性(reelin-positive,RE+)投射神经元组成。线粒体对于神经元的能量供应、代谢和可塑性至关重要。AD 尸检脑组织的证据支持线粒体功能障碍是 AD 最初的病理事件之一的观点,而且这种情况很可能发生在易受影响的 RE + EC LII 神经元中。本文我们将基于 AD 的解剖结构,对这些观点进行综述和讨论,并提出一个假说,试图解释 RE + EC LII 神经元对 NFT 形成的易感性。我们试图将受损的线粒体清除与 iAβ和涉及载脂蛋白 4 和 reelin 的信号联系起来,并认为它们与 AD 前驱期 RE + EC LII 神经元中 NFT 的形成有关。我们相信,对这些相互作用的未来研究有望深入了解 AD 的病因,并为药物开发提供新的思路。