Goleij Pouya, Khazeei Tabari Mohammad Amin, Poudineh Mohadeseh, Sanaye Pantea Majma, Khan Haroon, Kumar Alan Prem, Larsen Danaé S, Daglia Maria
USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, 4816118761, Iran.
Inflammopharmacology. 2025 Jul 22. doi: 10.1007/s10787-025-01859-y.
Neurons rely heavily on functional mitochondria for energy production. Mitochondrial dysfunction is a key player in age-related neurodegenerative diseases like Alzheimer's disease (AD). In AD, damaged mitochondria accumulate early, worsening the disease. This dysfunction disrupts cellular balance in neurons, leading to energy deficiencies, calcium imbalances, and oxidative stress. These issues further aggravate the harmful effects of amyloid beta (Aβ) plaques and tau tangles, ultimately leading to synaptic dysfunction, memory loss, and cognitive decline. While a complex link exists between mitochondrial dysfunction and AD hallmarks like Aβ plaques and tau tangles, the exact cause-and-effect relationship remains unclear. Additionally, recent evidence suggests impaired mechanisms for mitophagy in AD. Mitophagy is crucial for neuronal health, and studies have found changes to proteins involved in this process, mitochondrial dynamics, and mitochondrial production in AD. Impaired mitophagy might also be linked to problems with how cells fuse waste disposal compartments (autophagosomes) with lysosomes, and issues with maintaining proper acidity within lysosomes. Interestingly, melatonin, a hormone known for regulating sleep, has recently emerged as a potential neuroprotective agent. Studies using a mouse model of AD showed that melatonin treatment improved cognitive function by enhancing mitophagy. These findings suggest that melatonin's ability to improve mitophagy may be a promising avenue for future AD therapies. Therefore, in this review, we discuss the therapeutic effect of melatonin on mitochondrial dysfunction, especially mitophagy, in AD.
神经元严重依赖功能性线粒体来产生能量。线粒体功能障碍是阿尔茨海默病(AD)等与年龄相关的神经退行性疾病的关键因素。在AD中,受损的线粒体早期就会积累,使病情恶化。这种功能障碍破坏了神经元中的细胞平衡,导致能量不足、钙失衡和氧化应激。这些问题进一步加剧了淀粉样β蛋白(Aβ)斑块和tau缠结的有害影响,最终导致突触功能障碍、记忆丧失和认知衰退。虽然线粒体功能障碍与Aβ斑块和tau缠结等AD标志性特征之间存在复杂的联系,但确切的因果关系仍不清楚。此外,最近的证据表明AD中存在线粒体自噬机制受损的情况。线粒体自噬对神经元健康至关重要,研究发现AD中参与这一过程、线粒体动力学和线粒体生成的蛋白质发生了变化。线粒体自噬受损也可能与细胞将废物处理区室(自噬体)与溶酶体融合的问题以及溶酶体内维持适当酸度的问题有关。有趣的是,褪黑素是一种以调节睡眠而闻名的激素,最近已成为一种潜在的神经保护剂。使用AD小鼠模型的研究表明,褪黑素治疗通过增强线粒体自噬改善了认知功能。这些发现表明,褪黑素改善线粒体自噬的能力可能是未来AD治疗的一个有前景的途径。因此,在本综述中,我们讨论了褪黑素对AD中线粒体功能障碍,尤其是线粒体自噬的治疗作用。