Bolin L M, Thomas A R, Mayer D N, Rouse R V
Department of Pathology, Stanford University, CA 94305.
Neurosci Lett. 1988 Feb 15;85(1):158-62. doi: 10.1016/0304-3940(88)90447-8.
Interactions between migratory granule neurons and the developing molecular layer of the mouse cerebellum were examined using an in situ binding assay. Single cell suspensions of postnatal granule neurons specifically adhere to unfixed frozen cerebellar tissue sections. We investigated the influence of postnatal age of granule neurons and of tissue on this interaction. Granule neurons from P10 (the time of peak migratory activity) bind preferentially to the molecular layer. Premigratory granule neurons, P5, do not bind age-matched cerebellar tissue. Postmigratory granule neurons, P14 and older, adhere to the molecular and internal granular layers of age-matched and older cerebellar tissue but not to younger tissue. These binding patterns are most simply explained as a single receptor-ligand system in which both elements exhibit independent developmental regulation. Although granule neurons lose the ability to bind with increasing age, the molecular layer ligand retains its capacity for this interaction into adulthood, long after normal migration has ceased.
使用原位结合测定法研究了迁移颗粒神经元与小鼠小脑发育中的分子层之间的相互作用。出生后颗粒神经元的单细胞悬液特异性地粘附于未固定的冷冻小脑组织切片。我们研究了颗粒神经元的出生后年龄和组织对这种相互作用的影响。来自P10(迁移活动高峰期)的颗粒神经元优先与分子层结合。迁移前的颗粒神经元,P5,不与年龄匹配的小脑组织结合。迁移后的颗粒神经元,P14及更大年龄的,粘附于年龄匹配及更老的小脑组织的分子层和内颗粒层,但不与更年轻的组织结合。这些结合模式最简单的解释是一个单一的受体-配体系统,其中两个元件都表现出独立的发育调控。尽管颗粒神经元随着年龄增长失去结合能力,但分子层配体在正常迁移停止很久之后,仍保留其与这种相互作用的能力直至成年。