Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
Lipids. 2021 Jul;56(4):449-458. doi: 10.1002/lipd.12301. Epub 2021 Feb 24.
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol to produce phosphatidic acid (PtdOH) and regulates the balance between two lipid second messengers: diacylglycerol and PtdOH. Several lines of evidence suggest that the η isozyme of DGK is involved in the pathogenesis of bipolar disorder. However, the detailed molecular mechanisms regulating the pathophysiological functions remain unclear. One reason is that it is difficult to detect the cellular activity of DGKη. To overcome this difficulty, we utilized protein myristoylation and a cellular PtdOH sensor, the N-terminal region of α-synuclein (α-Syn-N). Although DGKη expressed in COS-7 cells was broadly distributed in the cytoplasm, myristoylated (Myr)-AcGFP-DGKη and Myr-AcGFP-DGKη-KD (inactive (kinase-dead) mutant) were substantially localized in the plasma membrane. Moreover, DsRed monomer-α-Syn-N significantly colocalized with Myr-AcGFP-DGKη but not Myr-AcGFP-DGKη-KD at the plasma membrane. When COS-7 cells were osmotically shocked, all DGKη constructs were exclusively translocated to osmotic shock-responsive granules (OSRG). DsRed monomer-α-Syn-N markedly colocalized with only Myr-AcGFP-DGKη at OSRG and exhibited a higher signal/background ratio (3.4) than Myr-AcGFP-DGKη at the plasma membrane in unstimulated COS-7 cells (2.5), indicating that α-Syn-N more effectively detects Myr-AcGFP-DGKη activity in OSRG. Therefore, these results demonstrated that the combination of myristoylation and the PtdOH sensor effectively detects DGKη activity in cells and that this method is convenient to examine the molecular functions of DGKη. Moreover, this method will be useful for the development of drugs targeting DGKη. Furthermore, the combination of myristoylation (intensive accumulation in membranes) and α-Syn-N can be applicable to assays for various cytosolic PtdOH-generating enzymes.
二酰基甘油激酶(DGK)将二酰基甘油磷酸化为磷酸脂酰甘油(PtdOH),并调节两种脂质第二信使:二酰基甘油和 PtdOH 之间的平衡。有几条证据表明 DGK 的 η 同工酶参与双相情感障碍的发病机制。然而,调节其生理病理功能的详细分子机制尚不清楚。一个原因是难以检测 DGKη 的细胞活性。为了克服这一困难,我们利用蛋白豆蔻酰化和一种细胞 PtdOH 传感器,即α-突触核蛋白(α-Syn)的 N 端区域(α-Syn-N)。尽管在 COS-7 细胞中表达的 DGKη 广泛分布于细胞质中,但豆蔻酰化(Myr)-AcGFP-DGKη 和 Myr-AcGFP-DGKη-KD(无活性(激酶失活)突变体)主要定位于质膜上。此外,DsRed 单体-α-Syn-N 与质膜上的 Myr-AcGFP-DGKη 显著共定位,但与 Myr-AcGFP-DGKη-KD 不共定位。当 COS-7 细胞受到渗透压冲击时,所有 DGKη 构建体都被专门转位到渗透压反应性颗粒(OSRG)。DsRed 单体-α-Syn-N 仅与 Myr-AcGFP-DGKη 在 OSRG 中显著共定位,并且在未刺激的 COS-7 细胞中其信号/背景比(3.4)高于质膜上的 Myr-AcGFP-DGKη(2.5),表明 α-Syn-N 更有效地检测 OSRG 中 Myr-AcGFP-DGKη 的活性。因此,这些结果表明,豆蔻酰化和 PtdOH 传感器的组合可有效地检测细胞中的 DGKη 活性,并且该方法便于研究 DGKη 的分子功能。此外,该方法将有助于开发针对 DGKη 的药物。此外,豆蔻酰化(膜中密集积累)和 α-Syn-N 的组合可适用于各种细胞溶质 PtdOH 生成酶的测定。