Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany.
Magn Reson Med. 2021 Jul;86(1):245-257. doi: 10.1002/mrm.28715. Epub 2021 Feb 23.
Spin-echo (SE) functional MRI (fMRI) can be highly advantageous compared to gradient-echo (GE) fMRI with respect to magnetic field-inhomogeneity artifacts. However, at 3T, the majority of blood oxygenation level-dependent (BOLD) fMRI experiments are performed using -weighted GE sequences because of their superior sensitivity compared to SE-fMRI. The presented SE implementation of a highly accelerated GE pulse sequence therefore aims to improve the sensitivity of SE-fMRI while profiting from a reduction of susceptibility-induced signal dropout.
Spin-echo MR encephalography (SE-MREG) is compared with the more conventionally used spin-echo echo-planar imaging (SE-EPI) and spin-echo simultaneous multislice (SE-SMS) at 3T in terms of capability to detect neuronal activations and resting-state functional connectivity. For activation analysis, healthy subjects underwent consecutive SE-MREG (pulse repetition time [TR] = 0.25 seconds), SE-SMS (TR = 1.3 seconds), and SE-EPI (TR = 4.4 seconds) scans in pseudorandomized order applied to a visual block design paradigm for generation of t-statistics maps. For the investigation of functional connectivity, additional resting-state data were acquired for 5 minutes and a seed-based correlation analysis using Stanford's FIND (Functional Imaging in Neuropsychiatric Disorders) atlas was performed.
The increased sampling rate of SE-MREG relative to SE-SMS and SE-EPI improves the sensitivity to detect BOLD activation by 33% and 54%, respectively, and increases the capability to extract resting-state networks. Compared with a brain region that is not affected by magnetic field inhomogeneities, SE-MREG shows 2.5 times higher relative signal strength than GE-MREG in mesial temporal structures.
SE-MREG offers a viable possibility for whole-brain fMRI with consideration of brain regions that are affected by strong susceptibility-induced magnetic field gradients.
与梯度回波(GE) fMRI 相比,自旋回波(SE)功能磁共振成像(fMRI)在磁场不均匀伪影方面具有很大的优势。然而,在 3T 下,由于与 SE-fMRI 相比具有更高的灵敏度,大多数血氧水平依赖(BOLD) fMRI 实验都是使用加权 GE 序列进行的。因此,所提出的高度加速 GE 脉冲序列的 SE 实现旨在提高 SE-fMRI 的灵敏度,同时受益于减少磁化率引起的信号丢失。
在 3T 下,自旋回波磁共振脑成像(SE-MREG)与更传统使用的自旋回波平面成像(SE-EPI)和自旋回波同时多层(SE-SMS)进行比较,以检测神经元激活和静息状态功能连接的能力。为了进行激活分析,健康受试者连续接受 SE-MREG(脉冲重复时间 [TR] = 0.25 秒)、SE-SMS(TR = 1.3 秒)和 SE-EPI(TR = 4.4 秒)扫描,以伪随机顺序应用于视觉块设计范式以生成 t 统计映射。为了研究功能连接,额外的静息状态数据采集了 5 分钟,并使用斯坦福大学的 FIND(神经精神障碍的功能成像)图谱进行基于种子的相关分析。
SE-MREG 相对于 SE-SMS 和 SE-EPI 的采样率提高,分别提高了 33%和 54%的灵敏度来检测 BOLD 激活,并提高了提取静息状态网络的能力。与不受磁场不均匀性影响的脑区相比,SE-MREG 在近侧颞叶结构中显示出比 GE-MREG 高 2.5 倍的相对信号强度。
SE-MREG 为考虑受强磁化率诱导磁场梯度影响的脑区的全脑 fMRI 提供了一种可行的可能性。