Suppr超能文献

使用脑磁图源水平长程相位耦合模式解码工作记忆任务条件。

Decoding working memory task condition using magnetoencephalography source level long-range phase coupling patterns.

机构信息

Department of Neuroscience, Imaging and Clinical Sciences, 'Gabriele d'Annunzio' University of Chieti-Pescara, Chieti 66013, Italy.

出版信息

J Neural Eng. 2021 Feb 24;18(1):016027. doi: 10.1088/1741-2552/abcefe.

Abstract

OBJECTIVE

The objective of the study is to identify phase coupling patterns that are shared across subjects via a machine learning approach that utilises source space magnetoencephalography (MEG) phase coupling data from a working memory (WM) task. Indeed, phase coupling of neural oscillations is putatively a key factor for communication between distant brain areas and is therefore crucial in performing cognitive tasks, including WM. Previous studies investigating phase coupling during cognitive tasks have often focused on a few a priori selected brain areas or a specific frequency band, and the need for data-driven approaches has been recognised. Machine learning techniques have emerged as valuable tools for the analysis of neuroimaging data since they catch fine-grained differences in the multivariate signal distribution. Here, we expect that these techniques applied to MEG phase couplings can reveal WM-related processes that are shared across individuals.

APPROACH

We analysed WM data collected as part of the Human Connectome Project. The MEG data were collected while subjects (n = 83) performed N-back WM tasks in two different conditions, namely 2-back (WM condition) and 0-back (control condition). We estimated phase coupling patterns (multivariate phase slope index) for both conditions and for theta, alpha, beta, and gamma bands. The obtained phase coupling data were then used to train a linear support vector machine in order to classify which task condition the subject was performing with an across-subject cross-validation approach. The classification was performed separately based on the data from individual frequency bands and with all bands combined (multiband). Finally, we evaluated the relative importance of the different features (phase couplings) for classification by the means of feature selection probability.

MAIN RESULTS

The WM condition and control condition were successfully classified based on the phase coupling patterns in the theta (62% accuracy) and alpha bands (60% accuracy) separately. Importantly, the multiband classification showed that phase coupling patterns not only in the theta and alpha but also in the gamma bands are related to WM processing, as testified by improvement in classification performance (71%).

SIGNIFICANCE

Our study successfully decoded WM tasks using MEG source space functional connectivity. Our approach, combining across-subject classification and a multidimensional metric recently developed by our group, is able to detect patterns of connectivity that are shared across individuals. In other words, the results are generalisable to new individuals and allow meaningful interpretation of task-relevant phase coupling patterns.

摘要

目的

本研究的目的是通过一种机器学习方法,利用工作记忆 (WM) 任务的源空间脑磁图 (MEG) 相位耦合数据,识别出跨被试共享的相位耦合模式。事实上,神经振荡的相位耦合被认为是大脑区域之间通信的关键因素,因此在执行认知任务(包括 WM)中至关重要。以前研究认知任务期间相位耦合的研究通常集中在几个先验选择的大脑区域或特定的频带,并且已经认识到需要数据驱动的方法。机器学习技术已成为神经影像学数据分析的有价值工具,因为它们可以捕捉到多元信号分布中的细微差异。在这里,我们期望将这些技术应用于 MEG 相位耦合可以揭示跨个体共享的与 WM 相关的过程。

方法

我们分析了作为人类连接组计划的一部分收集的 WM 数据。当被试(n=83)在两个不同条件下执行 N 回 WM 任务时,采集 MEG 数据,即 2 回(WM 条件)和 0 回(控制条件)。我们为两个条件和 theta、alpha、beta 和 gamma 频段估计了相位耦合模式(多元相位斜率指数)。然后,使用线性支持向量机对获得的相位耦合数据进行训练,以便通过跨被试交叉验证方法对被试执行的任务条件进行分类。分类分别基于单个频带的数据和所有频带的组合(多频带)进行。最后,我们通过特征选择概率评估分类中不同特征(相位耦合)的相对重要性。

主要结果

基于 theta(62%准确率)和 alpha 频段(60%准确率)的相位耦合模式,WM 条件和控制条件成功分类。重要的是,多频带分类表明,不仅在 theta 和 alpha 频段,而且在 gamma 频段的相位耦合模式都与 WM 处理有关,这体现在分类性能的提高(71%)。

意义

我们的研究成功地使用 MEG 源空间功能连接对 WM 任务进行解码。我们的方法结合了跨被试分类和我们小组最近开发的多维度量,能够检测出跨个体共享的连接模式。换句话说,结果是可推广到新个体的,并且允许对与任务相关的相位耦合模式进行有意义的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验