AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
Commun Biol. 2023 Oct 23;6(1):1079. doi: 10.1038/s42003-023-05448-z.
The brain dynamics underlying working memory (WM) unroll via transient frequency-specific large-scale brain networks. This multidimensionality (time, space, and frequency) challenges traditional analyses. Through an unsupervised technique, the time delay embedded-hidden Markov model (TDE-HMM), we pursue a functional network analysis of magnetoencephalographic data from 38 healthy subjects acquired during an n-back task. Here we show that this model inferred task-specific networks with unique temporal (activation), spectral (phase-coupling connections), and spatial (power spectral density distribution) profiles. A theta frontoparietal network exerts attentional control and encodes the stimulus, an alpha temporo-occipital network rehearses the verbal information, and a broad-band frontoparietal network with a P300-like temporal profile leads the retrieval process and motor response. Therefore, this work provides a unified and integrated description of the multidimensional working memory dynamics that can be interpreted within the neuropsychological multi-component model of WM, improving the overall neurophysiological and neuropsychological comprehension of WM functioning.
工作记忆(WM)的大脑动力学通过短暂的、特定频率的大规模大脑网络展开。这种多维性(时间、空间和频率)挑战了传统的分析方法。通过一种无监督技术,即时滞嵌入隐马尔可夫模型(TDE-HMM),我们对 38 名健康受试者在 n-back 任务期间采集的脑磁图数据进行了功能网络分析。在这里,我们表明,该模型推断出的特定任务网络具有独特的时间(激活)、频谱(相位耦合连接)和空间(功率谱密度分布)特征。一个theta 顶枕部网络发挥注意力控制和编码刺激的作用,一个alpha 颞枕部网络复述语言信息,一个具有 P300 样时间特征的宽带顶枕部网络则主导检索过程和运动反应。因此,这项工作提供了一个统一的、综合的描述,解释了多维度工作记忆动力学,可以被解释为 WM 的神经心理学多成分模型的一部分,提高了对 WM 功能的整体神经生理学和神经心理学理解。