Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, United States.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
J Chem Theory Comput. 2021 Mar 9;17(3):1596-1605. doi: 10.1021/acs.jctc.0c00827. Epub 2021 Feb 24.
Understanding ion solvation and transport under confinement is critical for a wide range of emerging technologies, including water desalination and energy storage. While molecular dynamics (MD) simulations have been widely used to study the behavior of confined ions, considerable deviations between simulation results depending on the specific treatment of intermolecular interactions remain. In the following, we present a systematic investigation of the structure and dynamics of two representative solutions, that is, KCl and LiCl, confined in narrow carbon nanotubes (CNTs) with a diameter of 1.1 and 1.5 nm, using a combination of first-principles and classical MD simulations. Our simulations show that the inclusion of both polarization and cation-π interactions is essential for the description of ion solvation under confinement, particularly for large ions with weak hydration energies. Beyond the variation in ion solvation, we find that cation-π interactions can significantly influence the transport properties of ions in CNTs, particularly for KCl, where our simulations point to a strong correlation between ion dehydration and diffusion. Our study highlights the complex interplay between nanoconfinement and specific intermolecular interactions that strongly control the solvation and transport properties of ions.
理解受限条件下的离子溶剂化和输运对于广泛的新兴技术至关重要,包括水淡化和储能。虽然分子动力学(MD)模拟已被广泛用于研究受限离子的行为,但由于对分子间相互作用的具体处理方式不同,模拟结果存在相当大的偏差。在下面,我们使用第一性原理和经典 MD 模拟相结合的方法,对直径分别为 1.1 和 1.5nm 的两种代表性溶液,即 KCl 和 LiCl,在狭窄的碳纳米管(CNT)中的结构和动力学进行了系统研究。我们的模拟表明,包含极化和阳离子-π 相互作用对于受限条件下的离子溶剂化描述是必不可少的,特别是对于水化能较弱的大离子。除了离子溶剂化的变化外,我们发现阳离子-π 相互作用可以显著影响离子在 CNT 中的输运性质,特别是对于 KCl,我们的模拟表明离子去水化和扩散之间存在很强的相关性。我们的研究强调了纳米受限和特定分子间相互作用之间的复杂相互作用,这些相互作用强烈控制离子的溶剂化和输运性质。